8 research outputs found

    Ultrafast fibre lasers

    No full text
    Ultrafast fibre lasers are fundamental building blocks of many photonic systems used in industrial and medical applications as well as for scientific research. Here, we review the essential components and operation regimes of ultrafast fibre lasers and discuss how they are instrumental in a variety of applications. In regards to laser technology, we discuss the present state of the art of large-mode-area fibres and their utilization in high-power, chirped-pulse amplification systems. In terms of commercial applications, we introduce industrial micromachining and medical imaging, and describe emerging applications in the mid-infrared and extreme-ultraviolet spectral regions, as facilitated by frequency shifting induced by fibre frequency combs

    Spectroscopy with Lasers

    No full text

    Lasers and Coherent Light Sources

    No full text

    A review of high energy density beam processes for welding and additive manufacturing applications

    No full text

    Optical Materials and Their Properties

    No full text

    Assessing written work by determining competence to achieve the module-specific learning outcomes.

    No full text
    This chapter describes lasers and other sources of coherent light that operate in a wide wavelength range. First, the general principles for the generation of coherent continuous-wave and pulsed radiation are treated including the interaction of radiation with matter, the properties of optical resonators and their modes as well as such processes as Q-switching and mode-locking. The general introduction is followed by sections on numerous types of lasers, the emphasis being on todayʼs most important sources of coherent light, in particular on solid-state lasers and several types of gas lasers. An important part of the chapter is devoted to the generation of coherent radiation by nonlinear processes with optical parametric oscillators, difference- and sum-frequency generation, and high-order harmonics. Radiation in the extended ultraviolet (EUV) and x-ray ranges can be generated by free electron lasers (FEL) and advanced x-ray sources. Ultrahigh light intensities up to 1021 W/cm2 open the door to studies of relativistic laser–matter interaction and laser particle acceleration. The chapter closes with a section on laser stabilization
    corecore