40 research outputs found

    Recombinant family 3 carbohydrate-binding module as a new additive for enhanced enzymatic saccharification of whole slurry from autohydrolyzed eucalyptus globulus wood

    Get PDF
    By-products resulting from lignocellulosics pretreatment affect the digestibility of resulting whole slurries, but this can be minimized by additives supplementation. In this work, a family 3 carbohydrate-binding module (CBM3), recombinantly produced from Escherichia coli, was used as additive in the enzymatic hydrolysis of the whole slurry from autohydrolyzed Eucalyptus globulus wood (EGW). At the higher dosage used (30 mg/gsolids), CBM3 led to an increase in glucose yield from 75 to 89%. A similar result was obtained for bovine serum albumin (BSA) (11% increase), which has a well-documented additive effect. CBM3 had no effect on the non-productive binding of enzymes, since it could not bind to EGW lignin, while it rapidly bound to cellulose, as shown by fluorescence microscopy. CBM3 is a valid additive for enhanced lignocellulosic saccharification and a valuable alternative to costly additives (e.g. polyethylene glycol) as it can be affordably produced from heterologous bacterium, thus contributing to more cost-efficient biomass valorization bioprocesses.This work was developed under the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte. The research leading to the reported results has received funding from Fundação para a Ciência e a Tecnologia (FCT) through the project MultiBiorefinery (POCI-01–0145-FEDER-016403) and through grants to C. Oliveira (SFRH/BPD/110640/2015) and D. Gomes (SFRH/BD/88623/2012).info:eu-repo/semantics/publishedVersio

    High stability and low competitive inhibition of thermophilic Thermopolyspora flexuosa GH10 xylanase in biomass-dissolving ionic liquids

    No full text
    Thermophilic Thermopolyspora flexuosa GH10 xylanase (TfXYN10A) was studied in the presence of biomass-dissolving hydrophilic ionic liquids (ILs) [EMIM]OAc, [EMIM]DMP and [DBNH]OAc. The temperature optimum of TfXYN10A with insoluble xylan in the pulp was at 65-70 °C, with solubilised 1 % xylan at 70-75 °C and with 3 % xylan at 75-80 °C. Therefore, the amount of soluble substrate affects the enzyme activity at high temperatures. The experiments with ILs were done with 1 % substrate. TfXYN10A can partially hydrolyse soluble xylan even in the presence of 40 % (v/v) ILs. Although ILs decrease the apparent temperature optimum, a surprising finding was that at the inactivating temperatures (80-90 °C), especially [EMIM]OAc increases the stability of TfXYN10A indicating that the binding of IL molecules strengthens the protein structure. Earlier kinetic studies showed an increased Km with ILs, indicating that ILs function as competitive inhibitors. TfXYN10A showed low increase of Km, which was 2-, 3- and 4-fold with 15 % [EMIM]OAc, [DBNH]OAc and [EMIM]DMP, respectively. One reason for the low competitive inhibition could be the high affinity to the substrate (low Km). Xylanases with low Km (~1 mg/mL) appear to show higher tolerance to ILs than xylanases with higher Km (~2 mg/mL). Capillary electrophoresis showed that TfXYN10A hydrolyses xylan to the end-products in 15-35 % ILs practically as completely as without IL, also indicating good binding of the short substrate molecules by TfXYN10A despite of major apparent IL binding sites above the catalytic residues. Substrate binding interactions in the active site appear to explain the high tolerance of TfXYN10A to ILs
    corecore