5 research outputs found

    Core commitments for field trials of gene drive organisms

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via the DOI in this record Gene drive organisms (GDOs), whose genomes have been genetically engineered to spread a desired allele through a population, have the potential to transform the way societies address a wide range of daunting public health and environmental challenges. The development, testing, and release of GDOs, however, are complex and often controversial. A key challenge is to clarify the appropriate roles of developers and others actively engaged in work with GDOs in decision-making processes, and, in particular, how to establish partnerships with relevant authorities and other stakeholders. Several members of the gene drive community previously proposed safeguards for laboratory experiments with GDOs (1) that, in the absence of national or international guidelines, were considered essential for responsible laboratory work to proceed. Now, with GDO development advancing in laboratories (2–5), we envision similar safeguards for the potential next step: ecologically and/or genetically confined field trials to further assess the performance of GDOs. A GDO's propensity to spread necessitates well-developed criteria for field trials to assess its potential impacts (6). We, as a multidisciplinary group of GDO developers, ecologists, conservation biologists, and experts in social science, ethics, and policy, outline commitments below that we deem critical for responsible conduct of a field trial and to ensure that these technologies, if they are introduced, serve the public interest.British AcademyBritish Academ

    Marine invasion genomics: Revealing ecological and evolutionary consequences of biological invasions

    No full text
    Genomic approaches are increasingly being used to study biological invasions. Here, we first analyse how high-throughput sequencing has aided our understanding of the mechanisms associated with biological invasions. These include the transport of propagules to pre-invaded areas, an exploration of the consequences of hybridisation during range expansions, and the pre- and post- invasion adaptation of colonising populations. We then explore how contemporary genomic methods have been used to probe and monitor the spread of non-indigenous species. More specifically, we focus on the detection of species richness from environmental samples, measures of quantitative traits that may promote invasive- ness, analysis of rapid adaptation, and the study of phenotypic plasticity. Finally, we look to the future, exploring how genomic approaches will assist future biodiversity conservationists in their efforts to mitigate the spread and effects of biological invasions. Ultimately, although the use of genomic tools to study non-indigenous species has so far been rather limited, studies to date indicate that genomic tools offer unparalleled research opportunities to continually improve our understanding of marine biological invasion

    Ochratoxin A–induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies

    No full text
    corecore