17 research outputs found

    Social isolation stress induces ATF-7 phosphorylation and impairs silencing of the 5-HT 5B receptor gene

    No full text
    Many symptoms induced by isolation rearing of rodents may be relevant to neuropsychiatric disorders, including depression. However, identities of transcription factors that regulate gene expression in response to chronic social isolation stress remain elusive. The transcription factor ATF-7 is structurally related to ATF-2, which is activated by various stresses, including inflammatory cytokines. Here, we report that Atf-7-deficient mice exhibit abnormal behaviours and increased 5-HT receptor 5B (Htr5b) mRNA levels in the dorsal raphe nuclei. ATF-7 silences the transcription of Htr5B by directly binding to its 5â€Č-regulatory region, and mediates histone H3-K9 trimethylation via interaction with the ESET histone methyltransferase. Isolation-reared wild-type (WT) mice exhibit abnormal behaviours that resemble those of Atf-7-deficient mice. Upon social isolation stress, ATF-7 in the dorsal raphe nucleus is phosphorylated via p38 and is released from the Htr5b promoter, leading to the upregulation of Htr5b. Thus, ATF-7 may have a critical role in gene expression induced by social isolation stress

    Mechanical induction of the tumorigenic b-catenin pathway by tumour growth pressure

    No full text
    International audienceThe tumour microenvironment may contribute to tumorigenesis owing to mechanical forces such as fibrotic stiffness or mechanical pressure caused by the expansion of hyper-proliferative cells 1,2. Here we explore the contribution of the mechanical pressure exerted by tumour growth onto non-tumorous adjacent epithe-lium. In the early stage of mouse colon tumour development in the Notch 1 Apc 1/1638N mouse model, we observed mechanistic pressure stress in the non-tumorous epithelial cells caused by hyper-proliferative adjacent crypts overexpressing active Notch, which is associated with increased Ret and b-catenin signalling. We thus developed a method that allows the delivery of a defined mechanical pressure in vivo, by subcutaneously inserting a magnet close to the mouse colon. The implanted magnet generated a magnetic force on ultra-magnetic liposomes, stabilized in the mesench-ymal cells of the connective tissue surrounding colonic crypts after intravenous injection. The magnetically induced pressure quantitatively mimicked the endogenous early tumour growth stress in the order of 1,200 Pa, without affecting tissue stiffness, as monitored by ultrasound strain imaging and shear wave elastography. The exertion of pressure mimicking that of tumour growth led to rapid Ret activation and downstream phosphorylation of b-catenin on Tyr654, imparing its interaction with the E-cadherin in adhe-rens junctions, and which was followed by b-catenin nuclear trans-location after 15 days. As a consequence, increased expression of b-catenin-target genes was observed at 1 month, together with crypt enlargement accompanying the formation of early tumorous aberrant crypt foci. Mechanical activation of the tumorigenic b-catenin pathway suggests unexplored modes of tumour propagation based on mechanical signalling pathways in healthy epithelial cells surrounding the tumour, which may contribute to tumour heterogeneity. To test the tumorous impact of early tumour growth pressure on non-tumorous epithelial tissues in vivo, apart from the mechanical stiffness characteristic of the microenvironment of late tumours 1-

    The Discriminative Stimulus Properties of Drugs Used to Treat Depression and Anxiety

    No full text
    Drug discrimination is a powerful tool for evaluating the stimulus effects of psychoactive drugs and for linking these effects to pharmacological mechanisms. This chapter reviews the primary findings from drug discrimination studies of antidepressant and anxiolytic drugs, including novel pharmacological mechanisms. The stimulus properties revealed from these animal studies largely correspond to the receptor affinities of antidepressant and anxiolytic drugs, indicating that subjective effects may correspond to either therapeutic or side effects of these medications. We discuss drug discrimination findings concerning adjunctive medications and novel pharmacologic strategies in antidepressant and anxiolytic research. Future directions for drug discrimination work include an urgent need to explore the subjective effects of medications in animal models, to better understand shifts in stimulus sensitivity during prolonged treatments, and to further characterize stimulus effects in female subjects. We conclude that drug discrimination is an informative preclinical procedure that reveals the interoceptive effects of pharmacological mechanisms as they relate to behaviors that are not captured in other preclinical models
    corecore