46 research outputs found

    Evidence That Two ATP-Dependent (Lon) Proteases in Borrelia burgdorferi Serve Different Functions

    Get PDF
    The canonical ATP-dependent protease Lon participates in an assortment of biological processes in bacteria, including the catalysis of damaged or senescent proteins and short-lived regulatory proteins. Borrelia spirochetes are unusual in that they code for two putative ATP-dependent Lon homologs, Lon-1 and Lon-2. Borrelia burgdorferi, the etiologic agent of Lyme disease, is transmitted through the blood feeding of Ixodes ticks. Previous work in our laboratory reported that B. burgdorferi lon-1 is upregulated transcriptionally by exposure to blood in vitro, while lon-2 is not. Because blood induction of Lon-1 may be of importance in the regulation of virulence factors critical for spirochete transmission, the clarification of functional roles for these two proteases in B. burgdorferi was the object of this study. On the chromosome, lon-2 is immediately downstream of ATP-dependent proteases clpP and clpX, an arrangement identical to that of lon of Escherichia coli. Phylogenetic analysis revealed that Lon-1 and Lon-2 cluster separately due to differences in the NH2-terminal substrate binding domains that may reflect differences in substrate specificity. Recombinant Lon-1 manifested properties of an ATP-dependent chaperone-protease in vitro but did not complement an E. coli Lon mutant, while Lon-2 corrected two characteristic Lon-mutant phenotypes. We conclude that B. burgdorferi Lons -1 and -2 have distinct functional roles. Lon-2 functions in a manner consistent with canonical Lon, engaged in cellular homeostasis. Lon-1, by virtue of its blood induction, and as a unique feature of the Borreliae, may be important in host adaptation from the arthropod to a warm-blooded host

    Increased Hydrogen Production by Genetic Engineering of Escherichia coli

    Get PDF
    Escherichia coli is capable of producing hydrogen under anaerobic growth conditions. Formate is converted to hydrogen in the fermenting cell by the formate hydrogenlyase enzyme system. The specific hydrogen yield from glucose was improved by the modification of transcriptional regulators and metabolic enzymes involved in the dissimilation of pyruvate and formate. The engineered E. coli strains ZF1 (ΔfocA; disrupted in a formate transporter gene) and ZF3 (ΔnarL; disrupted in a global transcriptional regulator gene) produced 14.9, and 14.4 µmols of hydrogen/mg of dry cell weight, respectively, compared to 9.8 µmols of hydrogen/mg of dry cell weight generated by wild-type E. coli strain W3110. The molar yield of hydrogen for strain ZF3 was 0.96 mols of hydrogen/mol of glucose, compared to 0.54 mols of hydrogen/mol of glucose for the wild-type E. coli strain. The expression of the global transcriptional regulator protein FNR at levels above natural abundance had a synergistic effect on increasing the hydrogen yield in the ΔfocA genetic background. The modification of global transcriptional regulators to modulate the expression of multiple operons required for the biosynthesis of formate hydrogenlyase represents a practical approach to improve hydrogen production

    Enhanced Discrimination of Malignant from Benign Pancreatic Disease by Measuring the CA 19-9 Antigen on Specific Protein Carriers

    Get PDF
    The CA 19-9 assay detects a carbohydrate antigen on multiple protein carriers, some of which may be preferential carriers of the antigen in cancer. We tested the hypothesis that the measurement of the CA 19-9 antigen on individual proteins could improve performance over the standard CA 19-9 assay. We used antibody arrays to measure the levels of the CA 19-9 antigen on multiple proteins in serum or plasma samples from patients with pancreatic adenocarcinoma or pancreatitis. Sample sets from three different institutions were examined, comprising 531 individual samples. The measurement of the CA 19-9 antigen on any individual protein did not improve upon the performance of the standard CA 19-9 assay (82% sensitivity at 75% specificity for early-stage cancer), owing to diversity among patients in their CA 19-9 protein carriers. However, a subset of cancer patients with no elevation in the standard CA 19-9 assay showed elevations of the CA 19-9 antigen specifically on the proteins MUC5AC or MUC16 in all sample sets. By combining measurements of the standard CA 19-9 assay with detection of CA 19-9 on MUC5AC and MUC16, the sensitivity of cancer detection was improved relative to CA 19-9 alone in each sample set, achieving 67–80% sensitivity at 98% specificity. This finding demonstrates the value of measuring glycans on specific proteins for improving biomarker performance. Diagnostic tests with improved sensitivity for detecting pancreatic cancer could have important applications for improving the treatment and management of patients suffering from this disease

    Identification of Ligand Binding Sites of Proteins Using the Gaussian Network Model

    Get PDF
    The nonlocal nature of the protein-ligand binding problem is investigated via the Gaussian Network Model with which the residues lying along interaction pathways in a protein and the residues at the binding site are predicted. The predictions of the binding site residues are verified by using several benchmark systems where the topology of the unbound protein and the bound protein-ligand complex are known. Predictions are made on the unbound protein. Agreement of results with the bound complexes indicates that the information for binding resides in the unbound protein. Cliques that consist of three or more residues that are far apart along the primary structure but are in contact in the folded structure are shown to be important determinants of the binding problem. Comparison with known structures shows that the predictive capability of the method is significant
    corecore