38 research outputs found

    Peroral Amphotericin B Polymer Nanoparticles Lead to Comparable or Superior In Vivo Antifungal Activity to That of Intravenous Ambisome® or Fungizone™

    Get PDF
    Background: Despite advances in the treatment, the morbidity and mortality rate associated with invasive aspergillosis remains unacceptably high (70–90%) in immunocompromised patients. Amphotericin B (AMB), a polyene antibiotic with broad spectrum antifungal activity appears to be a choice of treatment but is available only as an intravenous formulation; development of an oral formulation would be beneficial as well as economical. Methodology: Poly(lactide-co-glycolode) (PLGA) nanoparticles encapsulating AMB (AMB-NPs) were developed for oral administration. The AMB-NPs were 113±20 nm in size with ~70% entrapment efficiency at 30% AMB w/w of polymer. The in vivo therapeutic efficacy of oral AMB-NPs was evaluated in neutropenic murine models of disseminated and invasive pulmonary aspergillosis. AMB-NPs exhibited comparable or superior efficacy to that of Ambisome® or Fungizone™ administered parenterally indicating potential of NPs as carrier for oral delivery. Conclusions: The present investigation describes an efficient way of producing AMB-NPs with higher AMB pay-load and entrapment efficiency employing DMSO as solvent and ethanol as non-solvent. The developed oral formulation was highly efficacious in murine models of disseminated aspergillosis as well as an invasive pulmonary aspergillosis, which is refractory to treatment with IP Fungizone™and responds only modestly to AmBisome®

    Using random forest and decision tree models for a new vehicle prediction approach in computational toxicology

    Get PDF
    yesDrug vehicles are chemical carriers that provide beneficial aid to the drugs they bear. Taking advantage of their favourable properties can potentially allow the safer use of drugs that are considered highly toxic. A means for vehicle selection without experimental trial would therefore be of benefit in saving time and money for the industry. Although machine learning is increasingly used in predictive toxicology, to our knowledge there is no reported work in using machine learning techniques to model drug-vehicle relationships for vehicle selection to minimise toxicity. In this paper we demonstrate the use of data mining and machine learning techniques to process, extract and build models based on classifiers (decision trees and random forests) that allow us to predict which vehicle would be most suited to reduce a drug’s toxicity. Using data acquired from the National Institute of Health’s (NIH) Developmental Therapeutics Program (DTP) we propose a methodology using an area under a curve (AUC) approach that allows us to distinguish which vehicle provides the best toxicity profile for a drug and build classification models based on this knowledge. Our results show that we can achieve prediction accuracies of 80 % using random forest models whilst the decision tree models produce accuracies in the 70 % region. We consider our methodology widely applicable within the scientific domain and beyond for comprehensively building classification models for the comparison of functional relationships between two variables

    Saudi SCD patients’ symptoms and quality of life relative to the number of ED visits

    Get PDF
    Background Individuals living with sickle cell disease (SCD) have significantly increased emergency department (ED) use compared to the general population. In Saudi Arabia, health care is free for all individuals and therefore has no bearing on increased ED visits. However, little is known about the relationship between quality of life (QoL) and frequency of acute care utilization in this patient population. Methods A cross-sectional study was conducted on 366 patients with SCD who attended the outpatient department at King Fahad Hospital, Hofuf, Saudi Arabia. Data were collected through self-administered surveys, which included: demographics, SCD-related ED visits, clinical issues, and QoL levels. We assessed the ED use by asking for the number of SCD-related ED visits within a 6-month period. Results The self-report survey of ED visits was completed by 308 SCD patients. The median number of SCD-related ED visits within a 6-month time period (IQR) was four (2-7 visits). According to the unadjusted negative binomial model, the rate of SCD-related ED visits increased by (46, 39.3, 40, and 53.5 %) for patients with fever, skin redness with itching, swelling, and blood transfusion, respectively. Poor QoL tends to increase the rate of SCD-related ED visits. Well education and poor general health positively influenced the rate of SCD-related ED visits. Well education tends to increase the rate of SCD-related ED visits by 50.2 %. The rate of SCD-related ED visits decreased by 1.4 % for every point increase in general health. Conclusion Saudi patients with sickle cell disease reported a wide range of SCD-related ED visits. It was estimated that six of 10 SCD patients had at least three ED visits within a 6-month period. Well education and poor general health resulted in an increase in the rate of SCD-related ED visits

    Porous Magnesium Aluminometasilicate Tablets as Carrier of a Cyclosporine Self-Emulsifying Formulation

    No full text
    The aim of this study was to investigate the ability of liquid loadable tablets (LLT) to be loaded with a self-microemulsifying drug delivery system (SMEDDS) containing cyclosporine (CyA). LLT were prepared by direct compression of the porous carrier magnesium aluminometasilicate and subsequently loaded with SMEDDS by a simple absorption method. SMEDDS was evaluated regarding visual appearance and droplet size distribution after dispersion in aqueous media. The developed SMEDDS was found to be similar to Neoral®. LLT were characterized before and after loading regarding weight variation, tablet hardness, disintegration time, and in vitro drug release. It was found that LLT with high porosities suitable for liquid loading and further processing could be prepared. Adding a tablet disintegrant was found to improve in vitro drug release. Additionally, the volume-based loading capacity of LLT was evaluated and found to be comparable to soft gelatin and hard two-piece capsules. Furthermore, the pharmacokinetic performance of CyA from loaded LLT was tested in two PK-studies in dogs. Absorption of CyA from SMEDDS loaded into LLT was found in the first study to be significantly lower than the absorption of CyA from SMEDDS filled into a capsule. However, addition of a superdisintegrant improved the absorption markedly. The bioavailability of CyA from SMEDDS loaded into disintegrating LLT was found in the second study to be at the same level as from capsule formulation. In conclusion, the LLT technology is therefore seen as a promising alternative way of achieving a solid dosage form from liquid drug delivery systems

    The Immunosuppressive Activity of Polymeric Micellar Formulation of Cyclosporine A: In Vitro and In Vivo Studies

    No full text
    We have previously developed micelles of methoxy poly(ethylene oxide)-b-poly(ε-caprolactone) as vehicles for the solubilization and delivery of cyclosporine A (CsA). These micelles were able to reduce the renal uptake and nephrotoxicity of CsA. The purpose of the current study was to test the efficacy of polymeric micellar formulation of CsA (PM-CsA) in suppressing immune responses by either T cells or dendritic cells (DCs). The performance of PM-CsA was compared to that of the commercially available formulation of CsA (Sandimmune®). Our results demonstrate that PM-CsA could exert a potent immunosuppressive effect similar to that of Sandimmune® both in vitro and in vivo. Both formulations inhibited phenotypic maturation of DCs and impaired their allostimulatory capacity. Furthermore, both PM-CsA and Sandimmune® have shown similar dose-dependent inhibition of in vitro T cell proliferative responses. A similar pattern was observed in the in vivo study, where T cells isolated from both PM-CsA-treated and Sandimmune®-treated mice have shown impairment in their proliferative response and IFN-γ production at similar levels. These results highlight the potential of polymeric micelles to serve as efficient vehicles for the delivery of CsA
    corecore