18 research outputs found

    Landscape Diversity Related to Buruli Ulcer Disease in CĂ´te d'Ivoire

    Get PDF
    Buruli ulcer (BU) is one of the most neglected but treatable tropical diseases. The causative organism, Mycobacterium ulcerans, is from the family of bacteria that causes tuberculosis and leprosy. This severe skin disease leads to long-term functional disability if not treated. BU has been reported in over 30 countries mainly with tropical and subtropical climates, but Côte d'Ivoire is one of the most affected countries. M. ulcerans is an environmental bacterium and its mode of transmission to humans is still unclear, such that the disease is often referred to as the “mysterious disease” or the “new leprosy”. Here, we explored the relationship between environmental and socioeconomic factors and BU cases on a nationwide scale. We found that irrigated rice field cultures areas, and, to a lesser extent, banana fields as well as areas in the vicinity of dams used for irrigation and aquaculture purposes, represent high risk zones for the human population to contract BU in Côte d'Ivoire. This work identifies high-risk areas for BU in Côte d'Ivoire and deserves to be extended to different countries. We need now to obtain a global vision and understanding of the route of transmission of M. ulcerans to humans in order to better implement control strategies

    Mitochondrial DNA signatures at different spatial scales: from the effects of the Straits of Gibraltar to population structure in the meridional serotine bat (Eptesicus isabellinus)

    No full text
    The meridional serotine bat Eptesicus isabellinus is found in North Africa and the Iberian Peninsula. We analyzed the genetic structure of E. isabellinus at two different geographic scales to reveal the historical and ecological patterns that have shaped its populations. The role of the Straits of Gibraltar as an isolating barrier between African and Iberian populations is evaluated and the degree of genetic structure and female-mediated gene flow was assessed at a local scale between neighboring colonies. Populations of E. isabellinus from Iberia and northern Morocco show little genetic divergence and share mtDNA haplotypes, indicating that the Straits of Gibraltar are neither an impediment to dispersal nor a cause of genetic differentiation. Our results also suggest that E. isabellinus may have dispersed from western Andalusia into northern Morocco after the last glacial period. At a smaller geographic scale, the colonies studied showed high variation in genetic variability and structure, indicating that no female-mediated gene flow is present. This pattern is consistent with a described pattern of independent endemic viral circulation of the bat rabies virus EBLV-1, which was found when studying rabies dynamics in the same serotine bat coloniesPeer reviewe
    corecore