36 research outputs found

    Experimental evolution of sperm competitiveness in a mammal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When females mate with multiple partners, sperm from rival males compete to fertilise the ova. Studies of experimental evolution have proven the selective action of sperm competition on male reproductive traits. However, while reproductive traits may evolve in response to sperm competition, this does not necessarily provide evidence that sperm competitive ability responds to selection. Indeed, a study of <it>Drosophila </it>failed to observe divergence in sperm competitive ability of males in lines selected for enhanced sperm offence and defence.</p> <p>Results</p> <p>Adopting the naturally polygamous house mouse (<it>Mus domesticus</it>) as our vertebrate model, we performed an experimental evolution study and observed genetic divergence in sperm quality; males from the polygamous selection lines produced ejaculates with increased sperm numbers and greater sperm motility compared to males from the monogamous lines. Here, after 12 generations of experimental evolution, we conducted competitive matings between males from lineages evolving under sperm competition and males from lineages subject to relaxed selection. We reduced variation in paternity arising from embryo mortality by genotyping embryos <it>in utero </it>at 14 days gestation. Our microsatellite data revealed a significant paternity bias toward males that evolved under the selective regime of sperm competition.</p> <p>Conclusion</p> <p>We provide evidence that the sperm competitiveness phenotype can respond to selection, and show that improved sperm quality translates to greater competitive fertilisation success in house mice.</p

    A comparison of cryopreservation methods: Slow-cooling vs. rapid-cooling based on cell viability, oxidative stress, apoptosis, and CD34+ enumeration of human umbilical cord blood mononucleated cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The finding of human umbilical cord blood as one of the most likely sources of hematopoietic stem cells offers a less invasive alternative for the need of hematopoietic stem cell transplantation. Due to the once-in-a-life time chance of collecting it, an optimum cryopreservation method that can preserve the life and function of the cells contained is critically needed.</p> <p>Methods</p> <p>Until now, slow-cooling has been the routine method of cryopreservation; however, rapid-cooling offers a simple, efficient, and harmless method for preserving the life and function of the desired cells. Therefore, this study was conducted to compare the effectiveness of slow- and rapid-cooling to preserve umbilical cord blood of mononucleated cells suspected of containing hematopoietic stem cells. The parameters used in this study were differences in cell viability, malondialdehyde content, and apoptosis level. The identification of hematopoietic stem cells themselves was carried out by enumerating CD34<sup>+ </sup>in a flow cytometer.</p> <p>Results</p> <p>Our results showed that mononucleated cell viability after rapid-cooling (91.9%) was significantly higher than that after slow-cooling (75.5%), with a <it>p </it>value = 0.003. Interestingly, the malondialdehyde level in the mononucleated cell population after rapid-cooling (56.45 ÎźM) was also significantly higher than that after slow-cooling (33.25 ÎźM), with a <it>p </it>value < 0.001. The apoptosis level in rapid-cooling population (5.18%) was not significantly different from that of the mononucleated cell population that underwent slow-cooling (3.81%), with a <it>p </it>value = 0.138. However, CD34<sup>+ </sup>enumeration was much higher in the population that underwent slow-cooling (23.32 cell/Îźl) than in the one that underwent rapid-cooling (2.47 cell/Îźl), with a <it>p </it>value = 0.001.</p> <p>Conclusions</p> <p>Rapid-cooling is a potential cryopreservation method to be used to preserve the umbilical cord blood of mononucleated cells, although further optimization of the number of CD34<sup>+ </sup>cells after rapid-cooling is critically needed.</p

    Sperm competition and the evolution of sperm design in mammals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The influence of sperm competition upon sperm size has been a controversial issue during the last 20 years which remains unresolved for mammals. The hypothesis that, when ejaculates compete with rival males, an increase in sperm size would make sperm more competitive because it would increase sperm swimming speed, has generated contradictory results from both theoretical and empirical studies. In addition, the debate has extended to which sperm components should increase in size: the midpiece to accommodate more mitochondria and produce more energy to fuel motility, or the principal piece to generate greater propulsion forces.</p> <p>Results</p> <p>In this study we examined the influence of sperm competition upon sperm design in mammals using a much larger data set (226 species) than in previous analyses, and we corrected for phylogenetic effects by using a more complete and resolved phylogeny, and more robust phylogenetic control methods. Our results show that, as sperm competition increases, all sperm components increase in an integrated manner and sperm heads become more elongated. The increase in sperm length was found to be associated with enhanced swimming velocity, an adaptive trait under sperm competition.</p> <p>Conclusions</p> <p>We conclude that sperm competition has played an important role in the evolution of sperm design in mammals, and discuss why previous studies have failed to detect it.</p

    Sperm Competition, Sperm Numbers and Sperm Quality in Muroid Rodents

    Get PDF
    Sperm competition favors increases in relative testes mass and production efficiency, and changes in sperm phenotype that result in faster swimming speeds. However, little is known about its effects on traits that contribute to determine the quality of a whole ejaculate (i.e., proportion of motile, viable, morphologically normal and acrosome intact sperm) and that are key determinants of fertilization success. Two competing hypotheses lead to alternative predictions: (a) sperm quantity and quality traits co-evolve under sperm competition because they play complementary roles in determining ejaculate's competitive ability, or (b) energetic constraints force trade-offs between traits depending on their relevance in providing a competitive advantage. We examined relationships between sperm competition levels, sperm quantity, and traits that determine ejaculate quality, in a comparative study of 18 rodent species using phylogenetically controlled analyses. Total sperm numbers were positively correlated to proportions of normal sperm, acrosome integrity and motile sperm; the latter three were also significantly related among themselves, suggesting no trade-offs between traits. In addition, testes mass corrected for body mass (i.e., relative testes mass), showed a strong association with sperm numbers, and positive significant associations with all sperm traits that determine ejaculate quality with the exception of live sperm. An “overall sperm quality” parameter obtained by principal component analysis (which explained 85% of the variance) was more strongly associated with relative testes mass than any individual quality trait. Overall sperm quality was as strongly associated with relative testes mass as sperm numbers. Thus, sperm quality traits improve under sperm competition in an integrated manner suggesting that a combination of all traits is what makes ejaculates more competitive. In evolutionary terms this implies that a complex network of genetic and developmental pathways underlying processes of sperm formation, maturation, transport in the female reproductive tract, and preparation for fertilization must all evolve in concert

    Identification of ejaculated proteins in the house mouse (Mus domesticus) via isotopic labeling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Seminal fluid plays an important role in successful fertilization, but knowledge of the full suite of proteins transferred from males to females during copulation is incomplete. The list of ejaculated proteins remains particularly scant in one of the best-studied mammalian systems, the house mouse (<it>Mus domesticus</it>), where artificial ejaculation techniques have proven inadequate. Here we investigate an alternative method for identifying ejaculated proteins, by isotopically labeling females with <sup>15</sup>N and then mating them to unlabeled, vasectomized males. Proteins were then isolated from mated females and identified using mass spectrometry. In addition to gaining insights into possible functions and fates of ejaculated proteins, our study serves as proof of concept that isotopic labeling is a powerful means to study reproductive proteins.</p> <p>Results</p> <p>We identified 69 male-derived proteins from the female reproductive tract following copulation. More than a third of all spectra detected mapped to just seven genes known to be structurally important in the formation of the copulatory plug, a hard coagulum that forms shortly after mating. Seminal fluid is significantly enriched for proteins that function in protection from oxidative stress and endopeptidase inhibition. Females, on the other hand, produce endopeptidases in response to mating. The 69 ejaculated proteins evolve significantly more rapidly than other proteins that we previously identified directly from dissection of the male reproductive tract.</p> <p>Conclusion</p> <p>Our study attempts to comprehensively identify the proteins transferred from males to females during mating, expanding the application of isotopic labeling to mammalian reproductive genomics. This technique opens the way to the targeted monitoring of the fate of ejaculated proteins as they incubate in the female reproductive tract.</p

    Status and Prospects of ZnO-Based Resistive Switching Memory Devices

    Get PDF
    In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges
    corecore