38 research outputs found

    Landscape history, time lags and drivers of change : urban natural grassland remnants in Potchefstroom, South Africa

    Get PDF
    The history of the landscape directly affects biotic assemblages, resulting in time lags in species response to disturbances. In highly fragmented environments, this phenomenon often causes extinction debts. However, few studies have been carried out in urban settings. To determine if there are time lags in the response of temperate natural grasslands to urbanization. Does it differ for indigenous species and for species indicative of disturbance and between woody and open grasslands? Do these time lags change over time? What are the potential landscape factors driving these changes? What are the corresponding vegetation changes? In 1995 and 2012 vegetation sampling was carried out in 43 urban grassland sites. We calculated six urbanization and landscape measures in a 500 m buffer area surrounding each site for 1938, 1961, 1970, 1994, 1999, 2006, and 2010. We used generalized linear models and model selection to determine which time period best predicted the contemporary species richness patterns. Woody grasslands showed time lags of 20-40 years. Contemporary open grassland communities were, generally, associated with more contemporary landscapes. Altitude and road network density of natural areas were the most frequent predictors of species richness. The importance of the predictors changed between the different models. Species richness, specifically, indigenous herbaceous species, declined from 1995 to 2012. The history of urbanization affects contemporary urban vegetation assemblages. This indicates potential extinction debts, which have important consequences for biodiversity conservation planning and sustainable future scenarios.Peer reviewe

    Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex

    Get PDF
    Allopolyploidization often happens recurrently, but the evolutionary significance of its iterative nature is not yet fully understood. Of particular interest are the gene flow dynamics and the mechanisms that allow young sibling polyploids to remain distinct while sharing the same ploidy, heritage and overlapping distribution areas. By using eight highly variable nuclear microsatellites, newly reported here, we investigate the patterns of divergence and gene flow between 386 polyploid and 42 diploid individuals, representing the sibling allopolyploids Dactylorhiza majalis s.s. and D. traunsteineri s.l. and their parents at localities across Europe. We make use in our inference of the distinct distribution ranges of the polyploids, including areas in which they are sympatric (that is, the Alps) or allopatric (for example, Pyrenees with D. majalis only and Britain with D. traunsteineri only). Our results show a phylogeographic signal, but no clear genetic differentiation between the allopolyploids, despite the visible phenotypic divergence between them. The results indicate that gene flow between sibling Dactylorhiza allopolyploids is frequent in sympatry, with potential implications for the genetic patterns across their entire distribution range. Limited interploidal introgression is also evidenced, in particular between D. incarnata and D. traunsteineri. Altogether the allopolyploid genomes appear to be porous for introgression from related diploids and polyploids. We conclude that the observed phenotypic divergence between D. majalis and D. traunsteineri is maintained by strong divergent selection on specific genomic areas with strong penetrance, but which are short enough to remain undetected by genotyping dispersed neutral markers.UE FWF; P22260UE: Y66

    Morphological variability of oaks (Quercus robur L, Quercus petraea (Matt) Liebl, Quercus pubescens Willd) in northeastern France: preliminary results

    No full text
    Morphological variability of oaks in Lorraine (northeastern France), was studied. Eight hundred oaks were sampled in 80 stands covering a broad range of ecological variability; 10 leaves, fruits and current-year shoots were collected per tree. Thirty-four morphological variables were measured and analyzed by factorial correspondance analysis. It is concluded that Q robur and Q petraea are clearly separated with a few morphologically intermediate individuals (3.5%). Q petraea is more variable than Q robur. Q pubescens and Q robur are totally isolated from each other, while Q petraea and Q pubescens form a continuum. Many variables discriminate between these 3 species; some of them have been little known prior to now (pilosity, presence of intercalary ribs). These results are compared with those from other parts of Europe.Variabilité morphologique des chênes dans le Nord-Est de la France; résultats préliminaires. Nous avons étudié la différenciation morphologique des chênes pédonculé, sessile et pubescent dans le Nord-Est de la France. L'échantillonnage a porté sur 80 populations provenant de stations représentant toute la gamme de variation des milieux de chênaies en Lorraine. Sur 10 arbres par population, 10 feuilles, infruiescences et rameaux de l'année ont été prélevés. Trente-quatre variables morphologiques ont été mesurées et analysées par analyse factorielle des correspondances. On observe une très nette séparation des chênes sessile et pédonculé, avec seulement 3,5% d'individus morphologiquement intermédiaires, ainsi qu'un isolement total du chêne pubescent et du chêne pédonculé. Par contre, les chênes sessile et pubescent forment un continuum. Le chêne pédonculé est moins variable que le chêne sessile. De nombreuses variables discriminent ces 3 espèces, dont certaines peu connues jusqu'alors (pilosité, présence de nervures intercalaires). Ces résultats sont comparés à ceux obtenus par ailleurs en Europe

    Distribution of genomic regions differentiating oak species assessed by QTL detection

    No full text
    Pedunculate oak and sessile oak are two sympatric interfertile species that exhibit leaf morphological differences. We aimed to detect quantitative trait loci (QTLs) of these traits in order to locate genomic regions involved in species differentiation. A total of 15 leaf morphological traits were assessed in a mixed forest stand composed of Quercus petraea and Q. robur and in a full-sib pedigree of Q. robur. The progeny of the full-sib family were vegetatively propagated in two successive experiments comprising 174 and 216 sibs, and assessments were made on two leaves collected on each of the 1080 and 1530 cuttings corresponding to the two experiments. Traits that exhibited strong species differences in the mixed stand tended also to have higher repeatability values in the mapping population, thus indicating higher genetic control. A genetic map was constructed for QTL detection. Composite interval mapping with the one QTL model was used for QTL detection. From one to three QTLs were detected for 13 traits. In-depth analysis of the QTLs, controlling the five morphological traits that exhibited the highest interspecific differences in the mixed stand, indicated that they were distributed on six linkage groups, with two clusters comprising QTLs of at least two discriminant traits. These results were reinforced when error 1 for QTL detection was set at 5% at the chromosome level, as up to nine clusters could be identified. In conclusion, traits involved in interspecific differentiation of oaks are under polygenic control and widespread in clusters across the genom

    Diversity in current ecological thinking: Implications for environmental management

    Get PDF
    Current ecological thinking emphasizes that systems are complex, dynamic, and unpredictable across space and time. What is the diversity in interpretation of these ideas among today's ecologists, and what does this mean for environmental management? This study used a Policy Delphi survey of ecologists to explore their perspectives on a number of current topics in ecology. The results showed general concurrence with nonequilibrium views. There was agreement that disturbance is a widespread, normal feature of ecosystems with historically contingent responses. The importance of recognizing multiple levels of organization and the role of functional diversity in environmental change were also widely acknowledged. Views differed regarding the predictability of successional development, whether "patchiness" is a useful concept, and the benefits of shifting the focus from species to ecosystem processes. Because of their centrality to environmental management, these different views warrant special attention from both managers and ecologists. Such divergence is particularly problematic given widespread concerns regarding the poor linkages between science (here, ecology) and environmental policy and management, which have been attributed to scientific uncertainty and a lack of consensus among scientists, both jeopardizing the transfer of science into management. Several suggestions to help managers deal with these differences are provided, especially the need to interpret broader theory in the context of place-based assessments. The uncertainty created by these differences requires a proactive approach to environmental management, including clearly identifying environmental objectives, careful experimental design, and effective monitoring
    corecore