21 research outputs found

    Supersymmetric Decays of the Z' Boson

    Full text link
    The decay of the Z' boson into supersymmetric particles is studied. We investigate how these supersymmetric modes affect the current limits from the Tevatron and project the expected sensitivities at the LHC. Employing three representative supersymmetric Z' models, namely, E_6, U(1)_{B-L}, and the sequential model, we show that the current limits of the Z' mass from the Tevatron could be reduced substantially due to the weakening of the branching ratio into leptonic pairs. The mass reach for the E_6 Z' bosons is about 1.3-1.5 TeV at the LHC-7 (1 fb^{-1}), about 2.5 - 2.6 TeV at the LHC-10 (10 fb^{-1}), and about 4.2 - 4.3 TeV at the LHC-14 (100 fb^{-1}). A similar mass reach for the U(1)_{B-L} Z' is also obtained. We also examine the potential of identifying various supersymmetric decay modes of the Z' boson because it may play a crucial role in the detailed dynamics of supersymmetry breaking.Comment: 30 pages, including 13 figures. improvements to the presentation and references adde

    Breaking Local Baryon and Lepton Number at the TeV Scale

    Full text link
    Simple models are proposed where the baryon and lepton number are gauged and spontaneously broken near the weak scale. The models use a fourth generation that is vector-like with respect to the strong, weak and electromagnetic interactions to cancel anomalies. One does not need large Yukawa couplings to be consistent with the experimental limits on fourth generation quark masses and hence the models are free of Landau poles near the weak scale. We discuss the main features of simple non-supersymmetric and supersymmetric models. In these models the light neutrino masses are generated through the seesaw mechanism and proton decay is forbidden even though B and L are broken near the weak scale. For some values of the parameters in these models baryon and/or lepton number violation can be observed at the Large Hadron Collider.Comment: minor corrections, to appear in JHE

    Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the Wjj

    Full text link
    We present U(1) flavor models for leptophobic Z' with flavor dependent couplings to the right-handed up-type quarks in the Standard Model, which can accommodate the recent data on the top forward-backward (FB) asymmetry and the dijet resonance associated with a W boson reported by CDF Collaboration. Such flavor-dependent leptophobic charge assignments generally require extra chiral fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor symmetry calls for new U(1)'-charged Higgs doublets in order for the SM fermions to have realistic renormalizable Yukawa couplings. The stringent constraints from the top FB asymmetry at the Tevatron and the same sign top pair production at the LHC can be evaded due to contributions of the extra Higgs doublets. We also show that the extension could realize cold dark matter candidates.Comment: 40 pages, 10 figures, added 1 figure and extended discussion, accepted for publication in JHE

    Two loop electroweak corrections to BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^- in the B-LSSM

    Full text link
    The rare decays BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^- are important to research new physics beyond standard model. In this work, we investigate two loop electroweak corrections to BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^- in the minimal supersymmetric extension of the SM with local BLB-L gauge symmetry (B-LSSM), under a minimal flavor violating assumption for the soft breaking terms. In this framework, new particles and new definition of squarks can affect the theoretical predictions of these two processes, with respect to the MSSM. Considering the constraints from updated experimental data, the numerical results show that the B-LSSM can fit the experimental data for the branching ratios of BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^-. The results of the rare decays also further constrain the parameter space of the B-LSSM.Comment: 33 pages, 9 figures, Published in EPJ

    Thiotaurine:From Chemical and Biological Properties to Role in H²S Signaling

    No full text
    In the last decade thiotaurine, 2-aminoethane thiosulfonate, has been investigated as an inflammatory modulating agent as a result of its ability to release hydrogen sulfide (H2S) known to play regulatory roles in inflammation. Thiotaurine can be included in the "taurine family" due to structural similarity to taurine and hypotaurine, and is characterized by the presence of a sulfane sulfur moiety. Thiotaurine can be produced by different pathways, such as the spontaneous transsulfuration between thiocysteine - a persulfide analogue of cysteine - and hypotaurine as well as in vivo from cystine. Moreover, the enzymatic oxidation of cysteamine to hypotaurine and thiotaurine in the presence of inorganic sulfur can occur in animal tissues and last but not least thiotaurine can be generated by the transfer of sulfur from mercaptopyruvate to hypotaurine catalyzed by a sulfurtransferase. Thiotaurine is an effective antioxidant agent as demonstrated by its ability to counteract the damage caused by pro-oxidants in the rat. Recently, we observed the influence of thiotaurine on human neutrophils functional responses. In particular, thiotaurine has been found to prevent human neutrophil spontaneous apoptosis suggesting an alternative or additional role to its antioxidant activity. It is likely that the sulfane sulfur of thiotaurine may modulate neutrophil activation via persulfidation of target proteins. In conclusion, thiotaurine can represent a biologically relevant sulfur donor acting as a biological intermediate in the transport, storage and release of sulfide
    corecore