25 research outputs found

    Imaging oxygenation of human tumours

    Get PDF
    Tumour hypoxia represents a significant challenge to the curability of human tumours leading to treatment resistance and enhanced tumour progression. Tumour hypoxia can be detected by non-invasive and invasive techniques but the inter-relationships between these remains largely undefined. (18)F-MISO and Cu-ATSM-PET, and BOLD-MRI are the lead contenders for human application based on their non-invasive nature, ease of use and robustness, measurement of hypoxia status, validity, ability to demonstrate heterogeneity and general availability, these techniques are the primary focus of this review. We discuss where developments are required for hypoxia imaging to become clinically useful and explore potential new uses for hypoxia imaging techniques including biological conformal radiotherapy

    FTS and 2-DG induce pancreatic cancer cell death and tumor shrinkage in mice

    Get PDF
    The Ras inhibitor S-trans-trans farnesylthiosalicylic acid (FTS) inhibits active Ras, which controls cell proliferation, differentiation, survival, and metabolism. FTS also inhibits HIF1Ξ± expression in cancer cells, leading to an energy crisis. The synthetic glucose analog 2-deoxy-D-glucose (2-DG), which inhibits glycolysis, is selectively directed to tumor cells that exhibit increased glucose consumption. The 2-DG enters tumor cells, where it competes with glucose for glycolytic enzymes. In cancer models, as well as in human phase 1 trials, 2-DG inhibits tumor growth without toxicity. We postulated that under normoxic conditions, tumor cells treated with FTS would be more sensitive than normal cells to 2-DG. We show here that combined treatment with FTS and 2-DG inhibited cancer cell proliferation additively, yet induced apoptotic cell death synergistically both in vitro and in vivo. The induced apoptosis was inferred from QVD-OPH inhibition, an increase in cleaved caspase 3, and loss of survivin. FTS and 2-DG when combined, but not separately, also induced an increase in fibrosis of the tumor tissue, chronic inflammation, and tumor shrinkage. Overall, these results suggest a possible new treatment of pancreatic tumors by the combined administration of FTS and 2-DG, which together induce pancreatic tumor cell death and tumor shrinkage under non-toxic conditions

    Dual-Labeling Strategies for Nuclear and Fluorescence Molecular Imaging: A Review and Analysis

    Get PDF
    Molecular imaging is used for the detection of biochemical processes through the development of target-specific contrast agents. Separately, modalities such as nuclear and near-infrared fluorescence (NIRF) imaging have been shown to non-invasively monitor disease. More recently, merging of these modalities has shown promise owing to their comparable detection sensitivity and benefited from the development of dual-labeled imaging agents. Dual-labeled agents hold promise for whole-body and intraoperative imaging and could bridge the gap between surgical planning and image-guided resection with a single, molecularly targeted agent. In this review, we summarized the literature for dual-labeled antibodies and peptides that have been developed and have highlighted key considerations for incorporating NIRF dyes into nuclear labeling strategies. We also summarized our findings on several commercially available NIRF dyes and offer perspectives for developing a toolkit to select the optimal NIRF dye and radiometal combination for multimodality imaging

    Efficient Elimination of Cancer Cells by Deoxyglucose-ABT-263/737 Combination Therapy

    Get PDF
    As single agents, ABT-263 and ABT-737 (ABT), molecular antagonists of the Bcl-2 family, bind tightly to Bcl-2, Bcl-xL and Bcl-w, but not to Mcl-1, and induce apoptosis only in limited cell types. The compound 2-deoxyglucose (2DG), in contrast, partially blocks glycolysis, slowing cell growth but rarely causing cell death. Injected into an animal, 2DG accumulates predominantly in tumors but does not harm other tissues. However, when cells that were highly resistant to ABT were pre-treated with 2DG for 3 hours, ABT became a potent inducer of apoptosis, rapidly releasing cytochrome c from the mitochondria and activating caspases at submicromolar concentrations in a Bak/Bax-dependent manner. Bak is normally sequestered in complexes with Mcl-1 and Bcl-xL. 2DG primes cells by interfering with Bak-Mcl-1 association, making it easier for ABT to dissociate Bak from Bcl-xL, freeing Bak to induce apoptosis. A highly active glucose transporter and Bid, as an agent of the mitochondrial apoptotic signal amplification loop, are necessary for efficient apoptosis induction in this system. This combination treatment of cancer-bearing mice was very effective against tumor xenograft from hormone-independent highly metastasized chemo-resistant human prostate cancer cells, suggesting that the combination treatment may provide a safe and effective alternative to genotoxin-based cancer therapies

    Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours

    Get PDF
    BACKGROUND: Hypoxia, which is commonly observed in areas of primary tumours and of metastases, influences response to treatment. However, its characterisation has so far mainly been restricted to the ex vivo analysis of tumour sections using monoclonal antibodies specific to carbonic anhydrase IX (CA IX) or by pimonidazole staining, after the intravenous administration of this 2-nitroimidazole compound in experimental animal models.METHODS: In this study, we describe the generation of high-affinity human monoclonal antibodies (A3 and CC7) specific to human CA IX, using phage technology.RESULTS: These antibodies were able to stain CA IX ex vivo and to target the cognate antigen in vivo. In one of the two animal models of colorectal cancer studied (LS174T), CA IX imaging closely matched pimonidazole staining, with a preferential staining of tumour areas characterised by little vascularity and low perfusion. In contrast, in a second animal model (SW1222), distinct staining patterns were observed for pimonidazole and CA IX targeting. We observed a complementary pattern of tumour regions targeted in vivo by the clinical-stage vascular-targeting antibody L19 and the anti-CA IX antibody A3, indicating that a homogenous pattern of in vivo tumour targeting could be achieved by a combination of the two antibodies.CONCLUSION: The new human anti-CA IX antibodies are expected to be non-immunogenic in patients with cancer and may serve as broadly applicable reagents for the non-invasive imaging of hypoxia and for pharmacodelivery applications. British Journal of Cancer (2009) 101, 645-657. doi: 10.1038/sj.bjc.6605200 www.bjcancer.com Published online 21 July 2009 (C) 2009 Cancer Research U

    Radiobiological effects of hypoxia-dependent uptake of (64)Cu-ATSM: enhanced DNA damage and cytotoxicity in hypoxic cells

    No full text
    PURPOSE: Hypoxia occurs frequently in cancers and can lead to therapeutic resistance due to poor perfusion and loss of the oxygen enhancement effect. (64)Cu-ATSM has shown promise as a hypoxia diagnostic agent due to its selective uptake and retention in hypoxic cells and its emission of positrons for PET imaging. (64)Cu also emits radiotoxic Auger electrons and beta(-) particles and may therefore exhibit therapeutic potential when concentrated in hypoxic tissue. METHODS: MCF-7 cells were treated with 0-10 MBq/ml (64)Cu-ATSM under differing oxygen conditions ranging from normoxia to severe hypoxia. Intracellular response to hypoxia was measured using Western blotting for expression of HIF-1alpha, while cellular accumulation of (64)Cu was measured by gamma counting. DNA damage and cytotoxicity were measured with, respectively, the Comet assay and clonogenic survival. RESULTS: (64)Cu-ATSM uptake in MCF-7 cells increased as atmospheric oxygen decreased (up to 5.6 Bq/cell at 20.9% oxygen, 10.4 Bq/cell at 0.1% oxygen and 26.0 Bq/cell at anoxia). Toxicity of (64)Cu-ATSM in MCF-7 cells also increased as atmospheric oxygen decreased, with survival of 9.8, 1.5 and 0% in cells exposed to 10 MBq/ml at 20.9, 0.1 and 0% oxygen. The Comet assay revealed a statistically significant increase in (64)Cu-ATSM-induced DNA damage under hypoxic conditions. CONCLUSION: The results support a model in which hypoxia-enhanced uptake of radiotoxic (64)Cu induces sufficient DNA damage and toxicity to overcome the documented radioresistance in hypoxic MCF-7 cells. This suggests that (64)Cu-ATSM and related complexes have potential for targeted radionuclide therapy of hypoxic tumours
    corecore