15 research outputs found

    Four-Day-Old Human Neonates Look Longer at Non-Biological Motions of a Single Point-of-Light

    Get PDF
    BACKGROUND: Biological motions, that is, the movements of humans and other vertebrates, are characterized by dynamic regularities that reflect the structure and the control schemes of the musculo-skeletal system. Early studies on the development of the visual perception of biological motion showed that infants after three months of age distinguished between biological and non-biological locomotion. METHODOLOGY/PRINCIPAL FINDINGS: Using single point-light motions that varied with respect to the “two-third-power law” of motion generation and perception, we observed that four-day-old human neonates looked longer at non-biological motions than at biological motions when these were simultaneously presented in a standard preferential looking paradigm. CONCLUSION/SIGNIFICANCE: This result can be interpreted within the “violation of expectation” framework and can indicate that neonates' motion perception — like adults'—is attuned to biological kinematics

    Executive Functions of Six-Year-Old Boys with Normal Birth Weight and Gestational Age

    Get PDF
    Impaired fetal development, reflected by low birth weight or prematurity, predicts an increased risk for psychopathology, especially attention deficit hyperactivity disorder (ADHD). Such effects cut across the normal range of birth weight and gestation. Despite the strength of existing epidemiological data, cognitive pathways that link fetal development to mental health are largely unknown. In this study we examined the relation of birth weight (>2500 g) and gestational age (37–41 weeks) within the normal range with specific executive functions in 195 Singaporean six-year-old boys of Chinese ethnicity. Birth weight adjusted for gestational age was used as indicator of fetal growth while gestational age was indicative of fetal maturity. Linear regression revealed that increased fetal growth within the normal range is associated with an improved ability to learn rules during the intra/extra-dimensional shift task and to retain visual information for short period of time during the delayed matching to sample task. Moreover, faster and consistent reaction times during the stop-signal task were observed among boys born at term, but with higher gestational age. Hence, even among boys born at term with normal birth weight, variations in fetal growth and maturity showed distinct effects on specific executive functions
    corecore