7 research outputs found

    Morphological and molecular data from Madeira support the persistence of an ancient lineage of Taxus baccata

    No full text
    Macaronesia is an important biodiversity hotspot in the Mediterranean bioclimatic region, hosting a number of endemics, and encompassing outstanding refugia for ancient Tertiary plant lineages. We investig past occurrence and present distribution of yew (Taxus baccata L.) in the Madeiran archipelago, providing preliminary morphological and genetic descriptions and addressing conservation issues. Fifty-eight individuals presently occur in 19 micro-populations, as probable survivors of the continued yew exploitation across the centuries. Plants were characterized and compared with Euro-Mediterranean provenances by leaf morphology, anatomy, nuclear ITS (Internal Trascribed Spacer) and plastid trnS-trnQ DNA markers. The Madeiran provenance showed peculiar leaf size and morpho-anatomical characters. DNA sequences revealed a basal position of Madeiran yew in the Baccata phylogenetic clades along with the Azorean provenance. Gathered data suggest the survival of a lineage of T. baccata different from those on the continent, and with a possible closer derivation from the species' ancestors. Such evidences provide a base for identifying a great phylo- and phytogeographical interest of the Macaronesian provenance, and confirm the role of the archipelagos to preserve relict flora and lineages. The risk of extinction of Madeiran yew also calls for conservation strategies and restoration programs for a prompt species rescue. © 2013 Copyright Dipartimento di Biologia Evoluzionistica, Università di Firenze.s

    Development of Methods for the Determination of PhACs in Soil/Earthworm/Crop System Irrigated with Reclaimed Water

    No full text
    Pharmaceuticals have been becoming a major concern of environmental pollution since the beginning of the century. The ways in which these contaminants are introduced into the environment are very different, but almost always associated with wastewater. In fact, current wastewater treatment plants are not designed for the removal of pharmaceutical products. Indeed, the problem of water scarcity has played an important role in the introduction of pharmaceutical products into the environment, particularly in the agricultural sector. Because of the drought, more and more countries are resorting to the use of treated wastewater to irrigate vegetables for human consumption. Consequently, the reuse of wastewater in agriculture constitutes a continuous introduction of these molecules into the soil. The effects of this practice are not entirely clear. However, the probability that these compounds can enter the food chain directly is high. In fact, through radical absorption, plants could uptake pharmaceuticals from soil and water, leading to the accumulation of drugs in the tissues. The development of analytical methods of solid matrices such as soil or plant tissues requires substantial work due to the great complexity of the matrices and the differences between the physico-chemical properties of analytes of interest. Several multi-class methods have recently been developed to determine a large number of pharmaceutical products in soil or plants using different extraction techniques. This chapter addresses to list all the analytical procedures published so far used for the extraction and analysis of pharmaceutical products from plant tissues and from the soil irrigated with treated wastewater.This study has been financially supported by the EU through the WaterJPI-2015 AWARE project (PCIN-2017-067). This work was supported by the Spanish Ministry of Science and Innovation (Project CEX2018-000794-S). The authors thank the Water Challenges for a Changing World Joint Programming Initiative.Peer reviewe
    corecore