5,623 research outputs found

    Real estate investments and financial stability : evidence from regional commercial banks in China

    Get PDF
    The 2008 United States subprime mortgage crisis demonstrated how developments in real estate markets can cause instability in the banking sector and raised concerns in many emerging economies with significant real estate development and a rapidly growing commercial banking sector, particularly in China. There is clear evidence that commercial banks in China, especially regional commercial banks, have lent significantly to the real estate sector. The recent slowdown in the housing market in China and the increase in nonperforming loans (NPLs) in China's commercial banking sector motivated us to investigate the connection between real estate markets and banking stability. This paper proposes three testable hypotheses linking the growth of investment in real estate and the stability of regional commercial banks in China, measured by NPLs. Our empirical results reveal a close connection between the growth of investment in real estate and the NPLs among regional commercial banks, and its sensitivity to real estate market cycles. When real estate market activity declines, our results suggest, regional commercial banks can find themselves in trouble if they have significant exposure to one type of (real estate) asset. In addition, we find that regional bank competition plays a critical role in defining the relationship between bank stability and real estate investment activity

    Comment on "Geometrothermodynamics of a Charged Black Hole of String Theory"

    Full text link
    We comment on the conclusions found by Larra\~naga and Mojica regarding the consistency of the Geoemtrothermodynamics programme to describe the critical behaviour of a Gibbons-Maeda-Garfinkle-Horowitz-Strominger charged black hole. We argue that making the appropriate choice of metric for the thermodynamic phase space and, most importantly, considering the homogeneity of the thermodynamic potential we obtain consistent results for such a black hole.Comment: Comment on arXiv:1012.207

    Sediment load change with erosion processes under simulated rainfall events

    Full text link
    © 2019, Science Press Springer-Verlag. It is of great significance to quantify sediment load changing with erosion processes for improving the precision of soil loss prediction. Indoor rainfall experiments were conducted in 2 rainfall intensities (90 mm·h−1 and 120 mm·h−1), four slope gradients (17.60%, 26.80%, 36.40%, 46.60%) and 2 slope lengths (5 m, 10 m). Erosion processes are divided into five stages. Results show that sediment yield is mainly sourced from rill erosion, contributing from 54.60% to 95.70% and the duration of which is extended by slope gradients. Sediment load and sediment concentration are significantly different along erosion stages, with the highest values in rill development stage (SIV). Surface flow velocities (interrill and rill) demonstrate less significant differences along erosion stages. Rainfall intensity increases sediment load in all stages, with up to 12.0 times higher when changing from 90 to 120 mm·h−1. There is an increasing trend for sediment load and sediment concentration with the rising slope gradient, however, fluctuations existed with the lowest values on 26.80% and 36.40%, respectively, among different treatments. The slope gradient effects are enhanced by rainfall intensity and slope length. Results from this study are important for validating and improving hillslope erosion modelling at each erosion stage

    ELECTROCHEMICAL STUDIES ON MO - FE PROTEIN

    Get PDF
    The midpoint potentials and n values of Mo - Fe protein of azotobacter vinelandii ( Avl ) were determined by the coulometry at fixed potentials . The oxidation - reduction states of the Mo-Fe protein were discussed.The oxidation-reduction states of the Mo-Fe protein by the carrier ( methyl viologen ) is studied

    Deploying Proteins as Electrolyte Additives in Li–S Batteries: The Multifunctional Role of Fibroin in Improving Cell Performance

    Get PDF
    It is widely accepted that the commercial application of lithium–sulfur batteries is inhibited by their short cycle life, which is primarily caused by a combination of Li dendrite formation and active material loss due to polysulfide shuttling. Unfortunately, while numerous approaches to overcome these problems have been reported, most are unscalable and hence further hinder Li–S battery commercialization. Most approaches suggested also only tackle one of the primary mechanisms of cell degradation and failure. Here, we demonstrate that the use of a simple protein, fibroin, as an electrolyte additive can both prevent Li dendrite formation and minimize active material loss to enable high capacity and long cycle life (up to 500 cycles) in Li–S batteries, without inhibiting the rate performance of the cell. Through a combination of experiments and molecular dynamics (MD) simulations, it is demonstrated that the fibroin plays a dual role, both binding to polysulfides to hinder their transport from the cathode and passivating the Li anode to minimize dendrite nucleation and growth. Most importantly, as fibroin is inexpensive and can be simply introduced to the cell via the electrolyte, this work offers a route toward practical industrial applications of a viable Li–S battery system

    New insight into the potential oscillations during iodate reduction in alkaline solution

    Get PDF
    Potential oscillations during the reduction of iodate ions in alkaline solution under galvanostatic conditions have been reinvestigated without adding iodide. The oscillations can take place only when the applied current is larger than the limiting current, and the oscillation amplitudes are within the plateau region of the limiting current. The bistability, i.e., iodate reduction and hydrogen evolution at different potentials, coupled with convection feedback, induced by hydrogen evolution, accounts for the oscillations. The mechanism was supported by the experimental results of current sweep and cyclic voltammetry. Our study shows that physical processes, i.e., alternately predominant mass transfer of the iodate by diffusion and by convection, play an important role in the oscillations

    The interplay of intrinsic and extrinsic bounded noises in genetic networks

    Get PDF
    After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a genetic network. The influence of intrinsic and extrinsic noises on genetic networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i)(i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii)(ii) a model of enzymatic futile cycle and (iii)(iii) a genetic toggle switch. In (ii)(ii) and (iii)(iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possibile functional role of bounded noises

    Comparing surface erosion processes in four soils from the Loess Plateau under extreme rainfall events

    Full text link
    This research aims to improve erosion control practice in the Loess Plateau, by studying the surface erosion processes, including splash, sheet/interrill and rill erosion in four contrasting soils under high rainfall intensity (120 mm h−1) with three-scale indoor artificial experiments. Four contrasting soils as sandy loam, sandy clay loam, clay loam and loamy clay were collected from different parts of the Loess Plateau. The results showed that sediment load was significantly impacted by soil properties in all three sub-processes. Splash rate (4.0–21.6 g m−2∙min−1) was highest in sandy loam from the north part of the Loess Plateau and showed a negative power relation with the mean weight diameter of aggregates after 20 min of rainfall duration. The average sediment load by sheet/interrill erosion (6.94–42.86 g m−2∙min−1) was highest in clay loam from middle part of the Loess Plateau, and the stable sediment load after 20 min showed a positive power relation with the silt content in soil. The average sediment load increased dramatically by rill and interrill erosion (21.03–432.16 g m−2∙min−1), which was highest in loamy clay from south part of the Loess Plateau. The average sediment load after the occurrence of rill showed a positive power relation with clay content and a negative power relation with soil organic matter content. The impacts of slope gradient on the runoff rate and sediment load also changed with soil properties. The critical factors varied for different processes, which were the aggregate size for splash erosion, the content of silt particles and slope gradient for sheet/interrill erosion, and the content of clay particles, soil organic matter and slope gradient for rill erosion. Based on the results of the experiments, specific erosion control practices were proposed by targeting certain erosion processes in areas with different soil texture and different distribution of slope gradient. The findings from this study should support the improvement of erosion prediction and cropland management in different regions of the Loess Plateau

    Light dark matter and ZZ' dark force at colliders

    Full text link
    Light Dark Matter, <10<10 GeV, with sizable direct detection rate is an interesting and less explored scenario. Collider searches can be very powerful, such as through the channel in which a pair of dark matter particle are produced in association with a jet. It is a generic possibility that the mediator of the interaction between DM and the nucleus will also be accessible at the Tevatron and the LHC. Therefore, collider search of the mediator can provide a more comprehensive probe of the dark matter and its interactions. In this article, to demonstrate the complementarity of these two approaches, we focus on the possibility of the mediator being a new U(1)U(1)' gauge boson, which is probably the simplest model which allows a large direct detection cross section for a light dark matter candidate. We combine searches in the monojet+MET channel and dijet resonance search for the mediator. We find that for the mass of ZZ' between 250 GeV and 4 TeV, resonance searches at the colliders provide stronger constraints on this model than the monojet+MET searches.Comment: 23 pages and 14 figure

    Optimization Matrix Factorization Recommendation Algorithm Based on Rating Centrality

    Full text link
    Matrix factorization (MF) is extensively used to mine the user preference from explicit ratings in recommender systems. However, the reliability of explicit ratings is not always consistent, because many factors may affect the user's final evaluation on an item, including commercial advertising and a friend's recommendation. Therefore, mining the reliable ratings of user is critical to further improve the performance of the recommender system. In this work, we analyze the deviation degree of each rating in overall rating distribution of user and item, and propose the notion of user-based rating centrality and item-based rating centrality, respectively. Moreover, based on the rating centrality, we measure the reliability of each user rating and provide an optimized matrix factorization recommendation algorithm. Experimental results on two popular recommendation datasets reveal that our method gets better performance compared with other matrix factorization recommendation algorithms, especially on sparse datasets
    corecore