37 research outputs found

    Patient-derived glioblastoma cells show significant heterogeneity in treatment responses to the inhibitor-of-apoptosis-protein antagonist birinapant.

    Get PDF
    BACKGROUND: Resistance to temozolomide (TMZ) greatly limits chemotherapeutic effectiveness in glioblastoma (GBM). Here we analysed the ability of the Inhibitor-of-apoptosis-protein (IAP) antagonist birinapant to enhance treatment responses to TMZ in both commercially available and patient-derived GBM cells. METHODS: Responses to TMZ and birinapant were analysed in a panel of commercial and patient-derived GBM cell lines using colorimetric viability assays, flow cytometry, morphological analysis and protein expression profiling of pro- and antiapoptotic proteins. Responses in vivo were analysed in an orthotopic xenograft GBM model. RESULTS: Single-agent treatment experiments categorised GBM cells into TMZ-sensitive cells, birinapant-sensitive cells, and cells that were insensitive to either treatment. Combination treatment allowed sensitisation to therapy in only a subset of resistant GBM cells. Cell death analysis identified three principal response patterns: Type A cells that readily activated caspase-8 and cell death in response to TMZ while addition of birinapant further sensitised the cells to TMZ-induced cell death; Type B cells that readily activated caspase-8 and cell death in response to birinapant but did not show further sensitisation with TMZ; and Type C cells that showed no significant cell death or moderately enhanced cell death in the combined treatment paradigm. Furthermore, in vivo, a Type C patient-derived cell line that was TMZ-insensitive in vitro and showed a strong sensitivity to TMZ and TMZ plus birinapant treatments. CONCLUSIONS: Our results demonstrate remarkable differences in responses of patient-derived GBM cells to birinapant single and combination treatments, and suggest that therapeutic responses in vivo may be greatly affected by the tumour microenvironment

    The neurobiology of mouse models syntenic to human chromosome 15q

    Get PDF
    Autism is a neurodevelopmental disorder that manifests in childhood as social behavioral abnormalities, such as abnormal social interaction, impaired communication, and restricted interest or behavior. Of the known causes of autism, duplication of human chromosome 15q11–q13 is the most frequently associated cytogenetic abnormality. Chromosome 15q11–q13 is also known to include imprinting genes. In terms of neuroscience, it contains interesting genes such as Necdin, Ube3a, and a cluster of GABAA subunits as well as huge clusters of non-coding RNAs (small nucleolar RNAs, snoRNAs). Phenotypic analyses of mice genetically or chromosomally engineered for each gene or their clusters on a region of mouse chromosome seven syntenic to human 15q11–q13 indicate that this region may be involved in social behavior, serotonin metabolism, and weight control. Further studies using these models will provide important clues to the pathophysiology of autism. This review overviews phenotypes of mouse models of genes in 15q11–q13 and their relationships to autism

    Old drugs with new tricks

    No full text

    Triggering necroptosis in cisplatin and IAP antagonist-resistant ovarian carcinoma

    Get PDF
    Ovarian cancer patients are typically treated with carboplatin and paclitaxel, but suffer a high rate of relapse with recalcitrant disease. This challenge has fostered the development of novel approaches to treatment, including antagonists of the ‘inhibitor of apoptosis proteins' (IAPs), also called SMAC mimetics, as apoptosis-inducing agents whose action is opposed by caspase inhibitors. Surprisingly, IAP antagonist plus caspase inhibitor (IZ) treatment selectively induced a tumor necrosis factor-α (TNFα)-dependent death among several apoptosis-resistant cell lines and patient xenografts. The induction of necroptosis was common in ovarian cancer, with expression of catalytically active receptor-interacting protein kinase-3 (RIPK3) necessary for death, and in fact sufficient to compromise survival of RIPK3-negative, necroptosis-resistant ovarian cancer cells. The formation of a necrosome-like complex with a second critical effector, receptor-interacting serine–threonine kinase-1 (RIPK1), was observed. RIPK1, RIPK3 and TNFα were required for the induction of death, as agents that inhibit the function of any of these targets prevented cell death. Abundant RIPK3 transcript is common in serous ovarian cancers, suggesting that further evaluation and targeting of this RIPK3-dependent pathway may be of clinical benefit

    Simulating and predicting cellular and in vivo responses of colon cancer to combined treatment with chemotherapy and IAP antagonist Birinapant/TL32711

    Get PDF
    Apoptosis resistance contributes to treatment failure in colorectal cancer (CRC). New treatments that reinstate apoptosis competency have potential to improve patient outcome but require predictive biomarkers to target them to responsive patient populations. Inhibitor of apoptosis proteins (IAPs) suppress apoptosis, contributing to drug resistance; IAP antagonists such as TL32711 have therefore been developed. We developed a systems biology approach for predicting response of CRC cells to chemotherapy and TL32711 combinations in vitro and in vivo. CRC cells responded poorly to TL32711 monotherapy in vitro; however, co-treatment with 5-fluorouracil (5-FU) and oxaliplatin enhanced TL32711-induced apoptosis. Notably, cells from genetically identical populations responded highly heterogeneously, with caspases being activated both upstream and downstream of mitochondrial outer membrane permeabilisation (MOMP). These data, combined with quantities of key apoptosis regulators were sufficient to replicate in vitro cell death profiles by mathematical modelling. In vivo, apoptosis protein expression was significantly altered, and mathematical modelling for these conditions predicted higher apoptosis resistance that could nevertheless be overcome by combination of chemotherapy and TL32711. Subsequent experimental observations agreed with these predictions, and the observed effects on tumour growth inhibition correlated robustly with apoptosis competency. We therefore obtained insights into intracellular signal transduction kinetics and their population-based heterogeneities for chemotherapy/TL32711 combinations and provide proof-of-concept that mathematical modelling of apoptosis competency can simulate and predict responsiveness in vivo. Being able to predict response to IAP antagonist-based treatments on the background of cell-to-cell heterogeneities in the future might assist in improving treatment stratification approaches for these emerging apoptosis-targeting agents.</p
    corecore