40 research outputs found

    Extracting key information from historical data to quantify the transmission dynamics of smallpox

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantification of the transmission dynamics of smallpox is crucial for optimizing intervention strategies in the event of a bioterrorist attack. This article reviews basic methods and findings in mathematical and statistical studies of smallpox which estimate key transmission parameters from historical data.</p> <p>Main findings</p> <p>First, critically important aspects in extracting key information from historical data are briefly summarized. We mention different sources of heterogeneity and potential pitfalls in utilizing historical records. Second, we discuss how smallpox spreads in the absence of interventions and how the optimal timing of quarantine and isolation measures can be determined. Case studies demonstrate the following. (1) The upper confidence limit of the 99th percentile of the incubation period is 22.2 days, suggesting that quarantine should last 23 days. (2) The highest frequency (61.8%) of secondary transmissions occurs 3–5 days after onset of fever so that infected individuals should be isolated before the appearance of rash. (3) The U-shaped age-specific case fatality implies a vulnerability of infants and elderly among non-immune individuals. Estimates of the transmission potential are subsequently reviewed, followed by an assessment of vaccination effects and of the expected effectiveness of interventions.</p> <p>Conclusion</p> <p>Current debates on bio-terrorism preparedness indicate that public health decision making must account for the complex interplay and balance between vaccination strategies and other public health measures (e.g. case isolation and contact tracing) taking into account the frequency of adverse events to vaccination. In this review, we summarize what has already been clarified and point out needs to analyze previous smallpox outbreaks systematically.</p

    Hereditary spastic paraplegia with recessive trait caused by mutation in KLC4 gene

    No full text
    We report an association between a new causative gene and spastic paraplegia, which is a genetically heterogeneous disorder. Clinical phenotyping of one consanguineous family followed by combined homozygosity mapping and whole-exome sequencing analysis. Three patients from the same family shared common features of progressive complicated spastic paraplegia. They shared a single homozygous stretch area on chromosome 6. Whole-exome sequencing revealed a homozygous mutation (c.853_871del19) in the gene coding the kinesin light chain 4 protein (KLC4). Meanwhile, the unaffected parents and two siblings were heterozygous and one sibling was homozygous wild type. The 19 bp deletion in exon 6 generates a stop codon and thus a truncated messenger RNA and protein. The association of a KLC4 mutation with spastic paraplegia identifies a new locus for the disease
    corecore