5 research outputs found

    Differential Requirements of Two recA Mutants for Constitutive SOS Expression in Escherichia coli K-12

    Get PDF
    Background Repairing DNA damage begins with its detection and is often followed by elicitation of a cellular response. In E. coli, RecA polymerizes on ssDNA produced after DNA damage and induces the SOS Response. The RecA-DNA filament is an allosteric effector of LexA auto-proteolysis. LexA is the repressor of the SOS Response. Not all RecA-DNA filaments, however, lead to an SOS Response. Certain recA mutants express the SOS Response (recAC) in the absence of external DNA damage in log phase cells. Methodology/Principal Findings Genetic analysis of two recAC mutants was used to determine the mechanism of constitutive SOS (SOSC) expression in a population of log phase cells using fluorescence of single cells carrying an SOS reporter system (sulAp-gfp). SOSC expression in recA4142 mutants was dependent on its initial level of transcription, recBCD, recFOR, recX, dinI, xthA and the type of medium in which the cells were grown. SOSC expression in recA730 mutants was affected by none of the mutations or conditions tested above. Conclusions/Significance It is concluded that not all recAC alleles cause SOSC expression by the same mechanism. It is hypothesized that RecA4142 is loaded on to a double-strand end of DNA and that the RecA filament is stabilized by the presence of DinI and destabilized by RecX. RecFOR regulate the activity of RecX to destabilize the RecA filament. RecA730 causes SOSC expression by binding to ssDNA in a mechanism yet to be determined

    Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search

    No full text
    DNA breaks can be repaired with high fidelity by homologous recombination. A ubiquitous protein that is essential for this DNA template-directed repair is RecA. After resection of broken DNA to produce single-stranded DNA (ssDNA), RecA assembles on this ssDNA into a filament with the unique capacity to search and find DNA sequences in double-stranded DNA (dsDNA) that are homologous to the ssDNA. This homology search is vital to recombinational DNA repair, and results in homologous pairing and exchange of DNA strands. Homologous pairing involves DNA sequence-specific target location by the RecA-ssDNA complex. Despite decades of study, the mechanism of this enigmatic search process remains unknown. RecA is a DNA-dependent ATPase, but ATP hydrolysis is not required for DNA pairing and strand exchange, eliminating active search processes. Using dual optical trapping to manipulate DNA, and single-molecule fluorescence microscopy to image DNA pairing, we demonstrate that both the three-dimensional conformational state of the dsDNA target and the length of the homologous RecA-ssDNA filament have important roles in the homology search. We discovered that as the end-to-end distance of the target dsDNA molecule is increased, constraining the available three-dimensional (3D) conformations of the molecule, the rate of homologous pairing decreases. Conversely, when the length of the ssDNA in the nucleoprotein filament is increased, homology is found faster. We propose a model for the DNA homology search process termed 'intersegmental contact sampling', in which the intrinsic multivalent nature of the RecA nucleoprotein filament is used to search DNA sequence space within 3D domains of DNA, exploiting multiple weak contacts to rapidly search for homology. Our findings highlight the importance of the 3D conformational dynamics of DNA, reveal a previously unknown facet of the homology search, and provide insight into the mechanism of DNA target location by this member of a universal family of proteins

    Purified human BRCA2 stimulates RAD51-mediated recombination

    No full text
    Mutation of the breast cancer susceptibility gene, BRCA2, leads to breast and ovarian cancers. Mechanistic insight into the functions of human BRCA2 has been limited by the difficulty of isolating this large protein (3,418 amino acids). Here we report purification of full length BRCA2 and show that it both binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). BRCA2 acts by: targeting RAD51 to ssDNA over double-stranded DNA; enabling RAD51 to displace Replication protein-A (RPA) from ssDNA; and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. BRCA2 does not anneal ssDNA complexed with RPA, implying it does not directly function in repair processes that involve ssDNA annealing. Our findings show that BRCA2 is a key mediator of homologous recombination, and they provide a molecular basis for understanding how this DNA repair process is disrupted by BRCA2 mutations, which lead to chromosomal instability and cancer. One of the proposed driving forces behind the tumorigenic process is the onset of genomic instability that, when coupled to repeated rounds of cell division, promotes oncogenesis1. A hallmark of human and mouse cells that are mutant for BRCA2 is severe chromosoma
    corecore