94 research outputs found

    Higher education delays and shortens cognitive impairment. A multistate life table analysis of the US Health and Retirement Study

    Get PDF
    Improved health may extend or shorten the duration of cognitive impairment by postponing incidence or death. We assess the duration of cognitive impairment in the US Health and Retirement Study (1992–2004) by self reported BMI, smoking and levels of education in men and women and three ethnic groups. We define multistate life tables by the transition rates to cognitive impairment, recovery and death and estimate Cox proportional hazard ratios for the studied determinants. 95% confidence intervals are obtained by bootstrapping. 55 year old white men and women expect to live 25.4 and 30.0 years, of which 1.7 [95% confidence intervals 1.5; 1.9] years and 2.7 [2.4; 2.9] years with cognitive impairment. Both black men and women live 3.7 [2.9; 4.5] years longer with cognitive impairment than whites, Hispanic men and women 3.2 [1.9; 4.6] and 5.8 [4.2; 7.5] years. BMI makes no difference. Smoking decreases the duration of cognitive impairment with 0.8 [0.4; 1.3] years by high mortality. Highly educated men and women live longer, but 1.6 years [1.1; 2.2] and 1.9 years [1.6; 2.6] shorter with cognitive impairment than lowly educated men and women. The effect of education is more pronounced among ethnic minorities. Higher life expectancy goes together with a longer period of cognitive impairment, but not for higher levels of education: that extends life in good cognitive health but shortens the period of cognitive impairment. The increased duration of cognitive impairment in minority ethnic groups needs further study, also in Europe

    Executive Function and Falls in Older Adults: New Findings from a Five-Year Prospective Study Link Fall Risk to Cognition

    Get PDF
    Background: Recent findings suggest that executive function (EF) plays a critical role in the regulation of gait in older adults, especially under complex and challenging conditions, and that EF deficits may, therefore, contribute to fall risk. The objective of this study was to evaluate if reduced EF is a risk factor for future falls over the course of 5 years of follow-up. Secondary objectives were to assess whether single and dual task walking abilities, an alternative window into EF, were associated with fall risk. Methodology/Main Results We longitudinally followed 256 community-living older adults (age: 76.4±4.5 yrs; 61% women) who were dementia free and had good mobility upon entrance into the study. At baseline, a computerized cognitive battery generated an index of EF, attention, a closely related construct, and other cognitive domains. Gait was assessed during single and dual task conditions. Falls data were collected prospectively using monthly calendars. Negative binomial regression quantified risk ratios (RR). After adjusting for age, gender and the number of falls in the year prior to the study, only the EF index (RR: .85; CI: .74–.98, p = .021), the attention index (RR: .84; CI: .75–.94, p = .002) and dual tasking gait variability (RR: 1.11; CI: 1.01–1.23; p = .027) were associated with future fall risk. Other cognitive function measures were not related to falls. Survival analyses indicated that subjects with the lowest EF scores were more likely to fall sooner and more likely to experience multiple falls during the 66 months of follow-up (p<0.02). Conclusions/Significance: These findings demonstrate that among community-living older adults, the risk of future falls was predicted by performance on EF and attention tests conducted 5 years earlier. The present results link falls among older adults to cognition, indicating that screening EF will likely enhance fall risk assessment, and that treatment of EF may reduce fall risk

    The International Limits and Population at Risk of Plasmodium vivax Transmission in 2009

    Get PDF
    Growing evidence shows that Plasmodium vivax malaria is clinically less benign than has been commonly believed. In addition, it is the most widely distributed species of human malaria and is likely to cause more illness in certain regions than the more extensively studied P. falciparum malaria. Understanding where P. vivax transmission exists and measuring the number of people who live at risk of infection is a fundamental first step to estimating the global disease toll. The aim of this paper is to generate a reliable map of the worldwide distribution of this parasite and to provide an estimate of how many people are exposed to probable infection. A geographical information system was used to map data on the presence of P. vivax infection and spatial information on climatic conditions that impede transmission (low ambient temperature and extremely arid environments) in order to delineate areas where transmission was unlikely to take place. This map was combined with population distribution data to estimate how many people live in these areas and are, therefore, exposed to risk of infection by P. vivax malaria. The results show that 2.85 billion people were exposed to some level of risk of transmission in 2009

    Vivax malaria in Mauritania includes infection of a Duffy-negative individual

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duffy blood group polymorphisms are important in areas where <it>Plasmodium vivax </it>is present because this surface antigen is thought to act as a key receptor for this parasite. In the present study, Duffy blood group genotyping was performed in febrile uninfected and <it>P. vivax</it>-infected patients living in the city of Nouakchott, Mauritania.</p> <p>Methods</p> <p><it>Plasmodium vivax </it>was identified by real-time PCR. The Duffy blood group genotypes were determined by standard PCR followed by sequencing of the promoter region and exon 2 of the Duffy gene in 277 febrile individuals. Fisher's exact test was performed in order to assess the significance of variables.</p> <p>Results</p> <p>In the Moorish population, a high frequency of the <it>FYB<sup>ES</sup>/FYB<sup>ES </sup></it>genotype was observed in uninfected individuals (27.8%), whereas no <it>P. vivax</it>-infected patient had this genotype. This was followed by a high level of <it>FYA/FYB</it>, <it>FYB/FYB</it>, <it>FYB/FYB<sup>ES </sup></it>and <it>FYA/FYB<sup>ES </sup></it>genotype frequencies, both in the <it>P. vivax</it>-infected and uninfected patients. In other ethnic groups (Poular, Soninke, Wolof), only the <it>FYB<sup>ES</sup>/FYB<sup>ES </sup></it>genotype was found in uninfected patients, whereas the <it>FYA/FYB<sup>ES </sup></it>genotype was observed in two <it>P. vivax</it>-infected patients. In addition, one patient belonging to the Wolof ethnic group presented the <it>FYB<sup>ES</sup>/FYB<sup>ES </sup></it>genotype and was infected by <it>P. vivax</it>.</p> <p>Conclusions</p> <p>This study presents the Duffy blood group polymorphisms in Nouakchott City and demonstrates that in Mauritania, <it>P. vivax </it>is able to infect Duffy-negative patients. Further studies are necessary to identify the process that enables this Duffy-independent <it>P. vivax </it>invasion of human red blood cells.</p
    corecore