7 research outputs found

    Intrachanges as part of complex chromosome-type exchange aberrations

    No full text
    The chromosome-type exchange aberrations induced by ionizing radiation during the G(0)/G(1) phase of the cell cycle are believed to be the result of illegitimate rejoining of chromosome breaks. From numerous studies using chromosome painting, it has emerged that even after a moderate dose of radiation, a substantial fraction of these exchanges is complex. Most of them are derived from the free interaction between the ends of three or more breaks. Other studies have demonstrated that chromosomes occupy distinct territories in the interphase nucleus. Since breaks that are in close proximity have an enhanced interaction probability, it seems likely that after ionizing radiation many of the interacting breaks will be present within one chromosome or chromosome arm. Unfortunately, the majority of these intrachanges remain undetected, even when sophisticated molecular cytogenetic detection methods (i.e. mFISH) are applied to paint all chromosome pairs in distinct colors. In the present paper, we evaluate the limitations of full-color painting for the detection of complex exchanges and the correct interpretations of break interactions. (C) 2002 Elsevier Science B.V. All rights reserved

    Chromosomal radiosensitivity in breast cancer patients with a known or putative genetic predisposition

    Get PDF
    The chromosomal radiosensitivity of breast cancer patients with a known or putative genetic predisposition was investigated and compared to a group of healthy women. The chromosomal radiosensitivity was assessed with the G2 and the G0-micronucleus assay. For the G2 assay lymphocytes were irradiated in vitro with a dose of 0.4 Gy (60)Co γ-rays after 71 h incubation, and chromatid breaks were scored in 50 metaphases. For the micronucleus assay lymphocytes were exposed in vitro to 3.5 Gy (60)Co γ-rays at a high dose rate or low dose rate. 70 h post-irradiation cultures were arrested and micronuclei were scored in 1000 binucleate cells. The results demonstrated that the group of breast cancer patients with a known or putative genetic predisposition was on the average more radiosensitive than a population of healthy women, and this with the G2 as well as with the high dose rate and low dose rate micronucleus assay. With the G2 assay 43% of the patients were found to be radiosensitive. A higher proportion of the patients were radiosensitive with the micronucleus assay (45% with high dose rate and 61% with low dose rate). No correlation was found between the G2 and the G0-micronucleus chromosomal radiosensitivity. Out of the different subgroups considered, the group of the young breast cancer patients without family history showed the highest percentage of radiosensitive cases in the G2 (50%) as well as in the micronucleus assay (75–78%). British Journal of Cancer (2002) 87, 1379–1385. doi:10.1038/sj.bjc.6600628 www.bjcancer.com © 2002 Cancer Research U

    Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models

    No full text
    corecore