175 research outputs found

    Chronic Myeloid Leukemia Stem Cell Biology

    Get PDF
    Leukemia progression and relapse is fueled by leukemia stem cells (LSC) that are resistant to current treatments. In the progression of chronic myeloid leukemia (CML), blast crisis progenitors are capable of adopting more primitive but deregulated stem cell features with acquired resistance to targeted therapies. This in turn promotes LSC behavior characterized by aberrant self-renewal, differentiation, and survival capacity. Multiple reports suggest that cell cycle alterations, activation of critical signaling pathways, aberrant microenvironmental cues from the hematopoietic niche, and aberrant epigenetic events and deregulation of RNA processing may facilitate the enhanced survival and malignant transformation of CML progenitors. Here we review the molecular evolution of CML LSC that promotes CML progression and relapse. Recent advances in these areas have identified novel targets that represent important avenues for future therapeutic approaches aimed at selectively eradicating the LSC population while sparing normal hematopoietic progenitors in patients suffering from chronic myeloid malignancies

    Catalytic C(sp3)-H bond activation in tertiary alkylamines.

    Get PDF
    The development of robust catalytic methods to assemble tertiary alkylamines provides a continual challenge to chemical synthesis. In this regard, transformation of a traditionally unreactive C-H bond, proximal to the nitrogen atom, into a versatile chemical entity would be a powerful strategy for introducing functional complexity to tertiary alkylamines. A practical and selective metal-catalysed C(sp3)-H activation facilitated by the tertiary alkylamine functionality, however, remains an unsolved problem. Here, we report a Pd(II)-catalysed protocol that appends arene feedstocks to tertiary alkylamines via C(sp3)-H functionalization. A simple ligand for Pd(II) orchestrates the C-H activation step in favour of deleterious pathways. The reaction can use both simple and complex starting materials to produce a range of multifaceted γ-aryl tertiary alkylamines and can be rendered enantioselective. The enabling features of this transformation should be attractive to practitioners of synthetic and medicinal chemistry as well as in other areas that use biologically active alkylamines

    Caenorhabditis elegans HIM-18/SLX-4 Interacts with SLX-1 and XPF-1 and Maintains Genomic Integrity in the Germline by Processing Recombination Intermediates

    Get PDF
    Homologous recombination (HR) is essential for the repair of blocked or collapsed replication forks and for the production of crossovers between homologs that promote accurate meiotic chromosome segregation. Here, we identify HIM-18, an ortholog of MUS312/Slx4, as a critical player required in vivo for processing late HR intermediates in Caenorhabditis elegans. DNA damage sensitivity and an accumulation of HR intermediates (RAD-51 foci) during premeiotic entry suggest that HIM-18 is required for HR–mediated repair at stalled replication forks. A reduction in crossover recombination frequencies—accompanied by an increase in HR intermediates during meiosis, germ cell apoptosis, unstable bivalent attachments, and subsequent chromosome nondisjunction—support a role for HIM-18 in converting HR intermediates into crossover products. Such a role is suggested by physical interaction of HIM-18 with the nucleases SLX-1 and XPF-1 and by the synthetic lethality of him-18 with him-6, the C. elegans BLM homolog. We propose that HIM-18 facilitates processing of HR intermediates resulting from replication fork collapse and programmed meiotic DSBs in the C. elegans germline

    Mucopolysaccharidosis VI

    Get PDF
    Mucopolysaccharidosis VI (MPS VI) is a lysosomal storage disease with progressive multisystem involvement, associated with a deficiency of arylsulfatase B leading to the accumulation of dermatan sulfate. Birth prevalence is between 1 in 43,261 and 1 in 1,505,160 live births. The disorder shows a wide spectrum of symptoms from slowly to rapidly progressing forms. The characteristic skeletal dysplasia includes short stature, dysostosis multiplex and degenerative joint disease. Rapidly progressing forms may have onset from birth, elevated urinary glycosaminoglycans (generally >100 μg/mg creatinine), severe dysostosis multiplex, short stature, and death before the 2nd or 3rd decades. A more slowly progressing form has been described as having later onset, mildly elevated glycosaminoglycans (generally <100 μg/mg creatinine), mild dysostosis multiplex, with death in the 4th or 5th decades. Other clinical findings may include cardiac valve disease, reduced pulmonary function, hepatosplenomegaly, sinusitis, otitis media, hearing loss, sleep apnea, corneal clouding, carpal tunnel disease, and inguinal or umbilical hernia. Although intellectual deficit is generally absent in MPS VI, central nervous system findings may include cervical cord compression caused by cervical spinal instability, meningeal thickening and/or bony stenosis, communicating hydrocephalus, optic nerve atrophy and blindness. The disorder is transmitted in an autosomal recessive manner and is caused by mutations in the ARSB gene, located in chromosome 5 (5q13-5q14). Over 130 ARSB mutations have been reported, causing absent or reduced arylsulfatase B (N-acetylgalactosamine 4-sulfatase) activity and interrupted dermatan sulfate and chondroitin sulfate degradation. Diagnosis generally requires evidence of clinical phenotype, arylsulfatase B enzyme activity <10% of the lower limit of normal in cultured fibroblasts or isolated leukocytes, and demonstration of a normal activity of a different sulfatase enzyme (to exclude multiple sulfatase deficiency). The finding of elevated urinary dermatan sulfate with the absence of heparan sulfate is supportive. In addition to multiple sulfatase deficiency, the differential diagnosis should also include other forms of MPS (MPS I, II IVA, VII), sialidosis and mucolipidosis. Before enzyme replacement therapy (ERT) with galsulfase (Naglazyme®), clinical management was limited to supportive care and hematopoietic stem cell transplantation. Galsulfase is now widely available and is a specific therapy providing improved endurance with an acceptable safety profile. Prognosis is variable depending on the age of onset, rate of disease progression, age at initiation of ERT and on the quality of the medical care provided

    2016 WSES guidelines on acute calculous cholecystitis

    Full text link

    Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes

    Get PDF
    Homologous recombination is required for maintaining genomic integrity by functioning in high-fidelity repair of DNA double-strand breaks and other complex lesions, replication fork support, and meiotic chromosome segregation. Joint DNA molecules are key intermediates in recombination and their differential processing determines whether the genetic outcome is a crossover or non-crossover event. The Holliday model of recombination highlights the resolution of four-way DNA joint molecules, termed Holliday junctions, and the bacterial Holliday junction resolvase RuvC set the paradigm for the mechanism of crossover formation. In eukaryotes, much effort has been invested in identifying the eukaryotic equivalent of bacterial RuvC, leading to the discovery of a number of DNA endonucleases, including Mus81–Mms4/EME1, Slx1–Slx4/BTBD12/MUS312, XPF–ERCC1, and Yen1/GEN1. These nucleases exert different selectivity for various DNA joint molecules, including Holliday junctions. Their mutant phenotypes and distinct species-specific characteristics expose a surprisingly complex system of joint molecule processing. In an attempt to reconcile the biochemical and genetic data, we propose that nicked junctions constitute important in vivo recombination intermediates whose processing determines the efficiency and outcome (crossover/non-crossover) of homologous recombination

    Human plasma protein N-glycosylation

    Full text link
    corecore