37 research outputs found

    Regression based predictor for p53 transactivation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The p53 protein is a master regulator that controls the transcription of many genes in various pathways in response to a variety of stress signals. The extent of this regulation depends in part on the binding affinity of p53 to its response elements (REs). Traditional profile scores for p53 based on position weight matrices (PWM) are only a weak indicator of binding affinity because the level of binding also depends on various other factors such as interaction between the nucleotides and, in case of p53-REs, the extent of the spacer between the dimers.</p> <p>Results</p> <p>In the current study we introduce a novel <it>in-silico </it>predictor for p53-RE transactivation capability based on a combination of multidimensional scaling and multinomial logistic regression. Experimentally validated known p53-REs along with their transactivation capabilities are used for training. Through cross-validation studies we show that our method outperforms other existing methods. To demonstrate the utility of this method we (a) rank putative p53-REs of target genes and target microRNAs based on the predicted transactivation capability and (b) study the implication of polymorphisms overlapping p53-RE on its transactivation capability.</p> <p>Conclusion</p> <p>Taking into account both nucleotide interactions and the spacer length of p53-RE, we have created a novel <it>in-silico </it>regression-based transactivation capability predictor for p53-REs and used it to analyze validated and novel p53-REs and to predict the impact of SNPs overlapping these elements.</p

    Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis—a review

    Get PDF
    This review deals with podocyte proteins that play a significant role in the structure and function of the glomerular filter. Genetic linkage studies has identified several genes involved in the development of nephrotic syndrome and contributed to the understanding of the pathophysiology of glomerular proteinuria and/or focal segmental glomerulosclerosis. Here, we describe already well-characterized genetic diseases due to mutations in nephrin, podocin, CD2AP, alpha-actinin-4, WT1, and laminin β2 chain, as well as more recently identified genetic abnormalities in TRPC6, phospholipase C epsilon, and the proteins encoded by the mitochondrial genome. In addition, the role of the proteins which have shown to be important for the structure and functions by gene knockout studies in mice, are also discussed. Furthermore, some rare syndromes with glomerular involvement, in which molecular defects have been recently identified, are briefly described. In summary, this review updates the current knowledge of genetic causes of congenital and childhood nephrotic syndrome and provides new insights into mechanisms of glomerular dysfunction

    EPI64 interacts with Slp1/JFC1 to coordinate Rab8a and Arf6 membrane trafficking

    No full text
    ETOC: EPI64 is a TBC domain containing a microvillar protein that binds to Arf6 and induces actin-coated vacuole accumulation when overexpressed. EPI64 does this by stabilizing Arf6-GTP levels to induce clathrin-independent endocytosis and by preventing endosomes from maturing to the tubular endosome by lowering Rab8a GTP levels via association with JFC1
    corecore