228 research outputs found
New Measurement of Parity Violation in Elastic Electron-Proton Scattering and Implications for Strange Form Factors
We have measured the parity-violating electroweak asymmetry in the elastic
scattering of polarized electrons from the proton. The result is A = -15.05 +-
0.98(stat) +- 0.56(syst) ppm at the kinematic point theta_lab = 12.3 degrees
and Q^2 = 0.477 (GeV/c)^2. The measurement implies that the value for the
strange form factor (G_E^s + 0.392 G_M^s) = 0.025 +- 0.020 +- 0.014, where the
first error is experimental and the second arises from the uncertainties in
electromagnetic form factors. This measurement is the first fixed-target parity
violation experiment that used either a `strained' GaAs photocathode to produce
highly polarized electrons or a Compton polarimeter to continuously monitor the
electron beam polarization.Comment: 8 pages, 4 figures, Tex, elsart.cls; revised version as accepted for
Phys. Lett.
Measurement of the Polarized Structure Function for in the Resonance Region
The polarized longitudinal-transverse structure function
has been measured in the resonance region at and 0.65
GeV. Data for the reaction were taken at Jefferson Lab
with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally
polarized electrons at an energy of 1.515 GeV. For the first time a complete
angular distribution was measured, permitting the separation of different
non-resonant amplitudes using a partial wave analysis. Comparison with previous
beam asymmetry measurements at MAMI indicate a deviation from the predicted
dependence of using recent phenomenological
models.Comment: 5 pages, LaTex, 4 eps figures: to be published in PRC/Rapid
Communications. Version 2 has revised Q^2 analysi
Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic
range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c)
peaks where two nucleons each have 20% or less, and the third nucleon has most
of the transferred energy. These fast pp and pn pairs are back-to-back with
little momentum along the three-momentum transfer, indicating that they are
spectators. Experimental and theoretical evidence indicates that we have
measured distorted two-nucleon momentum distributions by striking the third
nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR
Observation of an Exotic Baryon in Exclusive Photoproduction from the Deuteron
In an exclusive measurement of the reaction , a
narrow peak that can be attributed to an exotic baryon with strangeness
is seen in the invariant mass spectrum. The peak is at
GeV/c with a measured width of 0.021 GeV/c FWHM, which is largely
determined by experimental mass resolution. The statistical significance of the
peak is . The mass and width of the observed peak are
consistent with recent reports of a narrow baryon by other experimental
groups.Comment: 5 pages, 5 figure
Onset of asymptotic scaling in deuteron photodisintegration
We investigate the transition from the nucleon-meson to quark-gluon
description of the strong interaction using the photon energy dependence of the
differential cross section for photon energies above 0.5 GeV and
center-of-mass proton angles between and . A possible
signature for this transition is the onset of cross section scaling
with the total energy squared, , at some proton transverse momentum, .
The results show that the scaling has been reached for proton transverse
momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime
is reached above this momentum.Comment: Accepted by PRL; 5 pages, 2 figure
Single pi+ Electroproduction on the Proton in the First and Second Resonance Regions at 0.25GeV^2 < Q^2 < 0.65GeV^2 Using CLAS
The ep -> e'pi^+n reaction was studied in the first and second nucleon
resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS
detector at Thomas Jefferson National Accelerator Facility. For the first time
the absolute cross sections were measured covering nearly the full angular
range in the hadronic center-of-mass frame. The structure functions sigma_TL,
sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by
fitting the phi-dependence of the measured cross sections, and were compared to
the MAID and Sato-Lee models.Comment: Accepted for publication in PR
First Measurement of Transferred Polarization in the Exclusive e p --> e' K+ Lambda Reaction
The first measurements of the transferred polarization for the exclusive ep
--> e'K+ Lambda reaction have been performed in Hall B at the Thomas Jefferson
National Accelerator Facility using the CLAS spectrometer. A 2.567 GeV electron
beam was used to measure the hyperon polarization over a range of Q2 from 0.3
to 1.5 (GeV/c)2, W from 1.6 to 2.15 GeV, and over the full center-of-mass
angular range of the K+ meson. Comparison with predictions of hadrodynamic
models indicates strong sensitivity to the underlying resonance contributions.
A non-relativistic quark model interpretation of our data suggests that the
s-sbar quark pair is produced with spins predominantly anti-aligned.
Implications for the validity of the widely used 3P0 quark-pair creation
operator are discussed.Comment: 6 pages, 4 figure
Exclusive electroproduction on the proton at CLAS
The reaction has been measured, using the 5.754
GeV electron beam of Jefferson Lab and the CLAS detector. This represents the
largest ever set of data for this reaction in the valence region. Integrated
and differential cross sections are presented. The , and
dependences of the cross section are compared to theoretical calculations based
on -channel meson-exchange Regge theory on the one hand and on quark handbag
diagrams related to Generalized Parton Distributions (GPDs) on the other hand.
The Regge approach can describe at the 30% level most of the features
of the present data while the two GPD calculations that are presented in this
article which succesfully reproduce the high energy data strongly underestimate
the present data. The question is then raised whether this discrepancy
originates from an incomplete or inexact way of modelling the GPDs or the
associated hard scattering amplitude or whether the GPD formalism is simply
inapplicable in this region due to higher-twists contributions, incalculable at
present.Comment: 29 pages, 29 figure
Measurement of Beam-Spin Asymmetries for Deep Inelastic Electroproduction
We report the first evidence for a non-zero beam-spin azimuthal asymmetry in
the electroproduction of positive pions in the deep-inelastic region. Data have
been obtained using a polarized electron beam of 4.3 GeV with the CLAS detector
at the Thomas Jefferson National Accelerator Facility (JLab). The amplitude of
the modulation increases with the momentum of the pion relative to
the virtual photon, , with an average amplitude of for range.Comment: 5 pages, RevTEX4, 3 figures, 2 table
Observation of an Exotic Baryon with S=+1 in Photoproduction from the Proton
The reaction was studied at Jefferson Lab using a
tagged photon beam with an energy range of 3-5.47 GeV. A narrow baryon state
with strangeness S=+1 and mass MeV/c was observed in the
invariant mass spectrum. The peak's width is consistent with the CLAS
resolution (FWHM=26 MeV/c), and its statistical significance is 7.8
1.0 ~. A baryon with positive strangeness has exotic structure and
cannot be described in the framework of the naive constituent quark model. The
mass of the observed state is consistent with the mass predicted by a chiral
soliton model for the baryon. In addition, the invariant mass
distribution was analyzed in the reaction with high
statistics in search of doubly-charged exotic baryon states. No resonance
structures were found in this spectrum.Comment: 5 pages, 5 figures, add reference
- …
