8 research outputs found

    An interplanetary shock traced by planetary auroral storms from the Sun to Saturn

    Full text link
    A relationship between solar activity and aurorae on Earth was postulated(1,2) long before space probes directly detected plasma propagating outwards from the Sun(3). Violent solar eruption events trigger interplanetary shocks(4) that compress Earth's magnetosphere, leading to increased energetic particle precipitation into the ionosphere and subsequent auroral storms(5,6). Monitoring shocks is now part of the 'Space Weather' forecast programme aimed at predicting solar-activity-related environmental hazards. The outer planets also experience aurorae, and here we report the discovery of a strong transient polar emission on Saturn, tentatively attributed to the passage of an interplanetary shock - and ultimately to a series of solar coronal mass ejection (CME) events. We could trace the shock-triggered events from Earth, where auroral storms were recorded, to Jupiter, where the auroral activity was strongly enhanced, and to Saturn, where it activated the unusual polar source. This establishes that shocks retain their properties and their ability to trigger planetary auroral activity thoughout the Solar System. Our results also reveal differences in the planetary auroral responses on the passing shock, especially in their latitudinal and local time dependences.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62930/1/nature02986.pd

    Circadian organization in reindeer

    No full text

    Circadian clocks — the fall and rise of physiology

    Get PDF
    Circadian clocks control the daily life of most light-sensitive organisms — from cyanobacteria to humans. Molecular processes generate cellular rhythmicity, and cellular clocks in animals coordinate rhythms through interaction (known as coupling). This hierarchy of clocks generates a complex, ~24-hour temporal programme that is synchronized with the rotation of the Earth. The circadian system ensures anticipation and adaptation to daily environmental changes, and functions on different levels — from gene expression to behaviour. Circadian research is a remarkable example of interdisciplinarity, unravelling the complex mechanisms that underlie a ubiquitous biological programme. Insights from this research will help to optimize medical diagnostics and therapy, as well as adjust social and biological timing on the individual level.
    corecore