435 research outputs found

    Caribbean intra-plate deformation: Paleomagnetic evidence from St. 2 Barthélemy Island for post-Oligocene rotation in the Lesser Antilles forearc

    Get PDF
    As subduction zones and their related processes are often studied in 2D, or cylindrical 3D sections, the dynamic effects of trench curvature and its evolution through time remain under-explored. Whereas temporal variations in trench trend may be estimated through restoring upper plate deformation, we investigate the forearc deformation history of the strongly curved northern Lesser Antilles trench, connecting the near-orthogonal Lesser Antilles subduction zone with the Motagua-Cayman transform plate boundary. Our new paleomagnetic dataset consists of 310 cores from Eo-Oligocene magmatic rocks and limestones from St. Barthélemy Island. The limestones yielded a post-folding magnetization containing a similar magnetic direction to those stored in magmatic rocks that intrude the folded carbonates, both indicating a post-Oligocene ~15°, and perhaps up to 25° counterclockwise rotation of the island. Our results highlight that the present-day trench curvature formed progressively during the Cenozoic, allowing us to discuss different tectonic scenarios explaining NE Caribbean plate deformation, and to identify key targets for future research on tectonic architecture and the potential present-day activity of intra-plate deformation that may pose seismic hazards

    Genetic Relations Between the Aves Ridge and the Grenada Back-Arc Basin, East Caribbean Sea

    Get PDF
    The Grenada Basin separates the active Lesser Antilles Arc from the Aves Ridge, described as a Cretaceous‐Paleocene remnant of the “Great Arc of the Caribbean.” Although various tectonic models have been proposed for the opening of the Grenada Basin, the data on which they rely are insufficient to reach definitive conclusions. This study presents, a large set of deep‐penetrating multichannel seismic reflection data and dredge samples acquired during the GARANTI cruise in 2017. By combining them with published data including seismic reflection data, wide‐angle seismic data, well data and dredges, we refine the understanding of the basement structure, depositional history, tectonic deformation and vertical motions of the Grenada Basin and its margins as follows: (1) rifting occurred during the late Paleocene‐early Eocene in a NW‐SE direction and led to seafloor spreading during the middle Eocene; (2) this newly formed oceanic crust now extends across the eastern Grenada Basin between the latitude of Grenada and Martinique; (3) asymmetrical pre‐Miocene depocenters support the hypothesis that the southern Grenada Basin originally extended beneath the present‐day southern Lesser Antilles Arc and probably partly into the present‐day forearc before the late Oligocene‐Miocene rise of the Lesser Antilles Arc; and (4) the Aves Ridge has subsided along with the Grenada Basin since at least the middle Eocene, with a general subsidence slowdown or even an uplift during the late Oligocene, and a sharp acceleration on its southeastern flank during the late Miocene. Until this acceleration of subsidence, several bathymetric highs remained shallow enough to develop carbonate platforms

    Demographic and Clinical Factors Associated with Response to Smallpox Vaccine in Preimmunized Volunteers

    Get PDF
    CONTEXT: In March 2003, the French Ministry of Health implemented a program on preparedness and response to a biological attack using smallpox as weapon. This program included the establishment of a preoutbreak national team that could be revaccinated against smallpox. OBJECTIVE: To identify demographic and clinical factors associated with vaccination success defined as the presence of a pustule at the inoculation site at day 8 (days 7-9), with an undiluted vaccinia virus derived from a Lister strain among preimmunized volunteers. VOLUNTEERS AND METHODS: From March 2003 to November 2006, we have studied prospectively 226 eligible volunteers. Demographic data were recorded for each volunteer (age, sex, number of previously smallpox vaccinations and date of the last vaccination). Smallpox vaccine adverse reactions were diagnosed on the basis of clinical examination performed at days 0, 7, 14, 21 and 28 after revaccination. RESULTS: A total of 226 volunteers (sex ratio H/F = 2.7) were revaccinated. Median age was 45 years (range: 27-63 yrs). All volunteers completed follow-up. Median number of vaccinations before revaccination was 2 (range: 1-8). The median delay between time of the study and the last vaccination was 29 years (range; 18-60 yrs). Sixty-one volunteers (27%) experienced one (n = 40) or more (n = 21) minor side effects during the 2-14 days after revaccination. Successful vaccination was noted in 216/226 volunteers (95.6%) at day 8 and the median of the pustule diameter was 5 mm (range: 1-20 mm). Size of the pustule at day 8 was correlated with age (p = 0.03) and with the presence of axillary adenopathy after revaccination (p = 0.007). Sex, number of prior vaccinations, delay between the last vaccination and revaccination, and local or systemic side effects with the exception of axillary adenopathy, were not correlated with the size of the pustule at day 8. CONCLUSIONS: Previously vaccinated volunteers can be successfully revaccinated with the Lister strain

    Search for Charged Higgs Bosons in e+e- Collisions at \sqrt{s} = 189 GeV

    Full text link
    A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at a centre-of-mass energy of 188.6 GeV, corresponding to an integrated luminosity of 176.4 pb^-1. Higgs decays into a charm and a strange quark or into a tau lepton and its associated neutrino are considered. The observed events are consistent with the expectations from Standard Model background processes. A lower limit of 65.5 GeV on the charged Higgs mass is derived at 95 % confidence level, independent of the decay branching ratio Br(H^{+/-} -> tau nu)

    Search for the standard model Higgs boson at LEP

    Get PDF

    Improving the Characterization of Radiologically Isolated Syndrome Suggestive of Multiple Sclerosis

    Get PDF
    OBJECTIVE: To improve the characterization of asymptomatic subjects with brain magnetic resonance imaging (MRI) abnormalities highly suggestive of multiple sclerosis (MS), a condition named as "radiologically isolated syndrome" (RIS). METHODS: Quantitative MRI metrics such as brain volumes and magnetization transfer (MT) were assessed in 19 subjects previously classified as RIS, 20 demographically-matched relapsing-remitting MS (RRMS) patients and 20 healthy controls (HC). Specific measures were: white matter (WM) lesion volumes (LV), total and regional brain volumes, and MT ratio (MTr) in lesions, normal-appearing WM (NAWM) and cortex. RESULTS: LV was similar in RIS and RRMS, without differences in distribution and frequency at lesion mapping. Brain volumes were similarly lower in RRMS and RIS than in HC (p<0.001). Lesional-MTr was lower in RRMS than in RIS (p = 0.048); NAWM-MTr and cortical-MTr were similar in RIS and HC and lower (p<0.01) in RRMS. These values were particularly lower in RRMS than in RIS in the sensorimotor and memory networks. A multivariate logistic regression analysis showed that 13/19 RIS had ≥70% probability of being classified as RRMS on the basis of their brain volume and lesional-MTr values. CONCLUSIONS: Macroscopic brain damage was similar in RIS and RRMS. However, the subtle tissue damage detected by MTr was milder in RIS than in RRMS in clinically relevant brain regions, suggesting an explanation for the lack of clinical manifestations of subjects with RIS. This new approach could be useful for narrowing down the RIS individuals with a high risk of progression to MS

    An Inhibitory Antibody Blocks Interactions between Components of the Malarial Invasion Machinery

    Get PDF
    Host cell invasion by apicomplexan pathogens such as the malaria parasite Plasmodium spp. and Toxoplasma gondii involves discharge of proteins from secretory organelles called micronemes and rhoptries. In Toxoplasma a protein complex comprising the microneme apical membrane antigen 1 (AMA1), two rhoptry neck proteins, and a protein called Ts4705, localises to the moving junction, a region of close apposition between parasite and host cell during invasion. Antibodies against AMA1 prevent invasion and are protective in vivo, and so AMA1 is of widespread interest as a malaria vaccine candidate. Here we report that the AMA1 complex identified in Toxoplasma is conserved in Plasmodium falciparum. We demonstrate that the invasion-inhibitory monoclonal antibody (mAb) 4G2, which recognises P. falciparum AMA1 (PfAMA1), cannot bind when PfAMA1 is in a complex with its partner proteins. We further show that a single completely conserved PfAMA1 residue, Tyr251, lying within a conserved hydrophobic groove adjacent to the mAb 4G2 epitope, is required for complex formation. We propose that mAb 4G2 inhibits invasion by preventing PfAMA1 from interacting with other components of the invasion complex. Our findings should aid the rational design of subunit malaria vaccines based on PfAMA1
    corecore