47 research outputs found

    Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective

    Full text link
    Aviation sector discharges approximately 2% of the global anthropogenic CO2, and the proportion is growing. The search for cost-effective and environmental-friendly bio-jet fuels derived from natural resources is gaining momentum. The microalgae cultivation conditions including temperature, pH, light intensity and nutrients have shown significant influence on the microalgae growth rate and chemical composition, which create the opportunities to enhance the yield and quality of microalgae bio-jet fuel. This review is focused on the hydroprocessing method for converting microalgae oil into bio-jet fuel, as well as the novel conceptual approaches for bio-jet fuel production such as gasification with Fischer-Tropsch and sugar-to-jet. Fischer-Tropsch synthesis of biomass is one of the best alternative ways to replace natural aviation fuel due to the high maximum energy efficiency and low emission of greenhouse gas. In addition, hydroprocessing with the aid of Ni and zeolites catalysts has successfully converted the microalgae biodiesel to bio-jet fuel with high yield and alkane selectivity. Among these techniques, hydroprocessing used the lowest production cost with the longest duration, whereas the bio-jet fuel with high selectivity (C8–C16) could be produced by using gasification with the Fischer-Tropsch process. Consequently, gasification and Fischer-Tropsch and sugar-to-jet can become the future alternative process to convert microalgae to bio-jet fuel. The development of microalgae bio-jet fuel will increase the security of energy supply and reduce the fuel expenses in aviation industry

    Insights into the development of microbial fuel cells for generating biohydrogen, bioelectricity, and treating wastewater

    Full text link
    Bio-electrochemical systems, such as microbial fuel cells (MFCs), serve as greener alternatives to conventional fuel energy. Despite the burgeoning review works on MFCs, comprehensive discussions are lacking on MFC designs and applications. This review paper provides insights into MFC applications, substrates used in MFC and the various design, technological, and chemical factors affecting MFC performance. MFCs have demonstrated efficacy in wastewater treatment of at least 50% and up to 98%. MFCs have been reported to produce ∼30 W/m2 electricity and ∼1 m3/d of biohydrogen, depending on the design and feedstock. Electricity generation rates of up to 5.04 mW/m−2–3.6 mW/m−2, 75–513 mW/m−2, and 135.4 mW/m−2 have been found for SCMFCs, double chamber MFCs, and stacked MFCs with the highest being produced by the single/hybrid single-chamber type using microalgae. Hybrid MFCs may emerge as financially promising technologies worth investigating due to their low operational costs, integrating low-cost proton exchange membranes such as PVA-Nafion-borosilicate, and electrodes made of natural materials, carbon, metal, and ceramic. MFCs are mostly used in laboratories due to their low power output and the difficulties in assessing the economic feasibility of the technology. The MFCs can generate incomes of as much as $2,498.77 × 10−2/(W/m2) annually through wastewater treatment and energy generation alone. The field application of MFC technology is also narrow due to its microbiological, electrochemical, and technological limitations, exacerbated by the gap in knowledge between laboratory and commercial-scale applications. Further research into novel and economically feasible electrode and membrane materials, the improvement of electrogenicity of the microbes used, and the potential of hybrid MFCs will provide opportunities to launch MFCs from the laboratory to the commercial-scale as a bid to improve the global energy security in an eco-friendly way
    corecore