217 research outputs found

    A community intervention trial of multimodal suicide prevention program in Japan: A Novel multimodal Community Intervention program to prevent suicide and suicide attempt in Japan, NOCOMIT-J

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To respond to the rapid surge in the incidence of suicide in Japan, which appears to be an ongoing trend, the Japanese Multimodal Intervention Trials for Suicide Prevention (J-MISP) have launched a multimodal community-based suicide prevention program, NOCOMIT-J. The primary aim of this study is to examine whether NOCOMIT-J is effective in reducing suicidal behavior in the community.</p> <p>Methods/DesignThis study is a community intervention trial involving seven intervention regions with accompanying control regions, all with populations of statistically sufficient size. The program focuses on building social support networks in the public health system for suicide prevention and mental health promotion, intending to reinforce human relationships in the community. The intervention program components includes a primary prevention measures of awareness campaign for the public and key personnel, secondary prevention measures for screening of, and assisting, high-risk individuals, after-care for individuals bereaved by suicide, and other measures. The intervention started in July 2006, and will continue for 3.5 years. Participants are Japanese and foreign residents living in the intervention and control regions (a total of population of 2,120,000 individuals).</p> <p>Discussion</p> <p>The present study is designed to evaluate the effectiveness of the community-based suicide prevention program in the seven participating areas.</p> <p>Trial registration</p> <p>UMIN Clinical Trials Registry (UMIN-CTR) UMIN000000460.</p

    A randomized controlled multicenter trial of post-suicide attempt case management for the prevention of further attempts in Japan (ACTION-J)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A previous suicide attempt is a potent risk factor for suicide later on. Crisis intervention, psychiatric and psychosocial evaluation at emergency medical facilities, and follow-up care for suicide attempters are considered important components for suicide prevention. The Japanese Multimodal Intervention Trials for Suicide Prevention (J-MISP) includes a randomized, controlled, multicenter trial of post-suicide attempt case management for the prevention of further attempts (ACTION-J) to address the continuing increase in suicides in Japan. The primary aim of ACTION-J is to examine the effectiveness of an extensive intervention for suicide attempters in prevention of recurrent suicidal behavior, as compared with standard intervention. This paper describes the rationale and protocol of the ACTION-J trial.</p> <p>Methods/Design</p> <p>In this clinical trial, case management intervention will be provided at 19 emergency medical facilities in Japan. After crisis intervention including psychiatric evaluation, psychosocial assessment, and psychological education, subjects will be randomly assigned to either a group receiving continuous case management or a control group receiving standard care. Suicidal ideation, depressive symptoms, and general health condition will be evaluated as secondary measures. The intervention was initiated in July 2006. By December, 2009, 842 subjects will be randomized. Subject follow-up will continue for 1.5 to 5 years.</p> <p>Discussion</p> <p>Suicide is a complex phenomenon that encompasses multiple factors. Case management by multi-sector collaboration is needed. ACTION-J may provide valuable information on suicide attempters and may develop effective case management to reduce future risk for suicide attempters.</p> <p>Trial registration</p> <p>UMIN Clinical Trials Registry number, UMIN000000444. ClinicalTrials.gov number, NCT00736918.</p

    C-Kit Binding Properties of Hesperidin (a Major Component of KMP6) as a Potential Anti-Allergic Agent

    Get PDF
    Accumulation of mast cells can be causally related to several allergic inflammations. Stem cell factor (SCF) as a mast cell chemotaxin induces mast cell migration. To clarify a new effect of Pyeongwee-San extract (KMP6, a drug for indigestion) for the treatment of allergy, we investigated the effects of KMP6 on SCF-induced migration of rat peritoneal mast cells (RPMCs). A molecular docking simulation showed that hesperidin, a major component of KMP6, controls the SCF and c-kit binding by interaction with the active site of the c-kit. KMP6 and hesperidin significantly inhibited SCF-induced migration of RPMCs (P<0.05). The ability of the SCF to enhance morphological alteration and F-actin formation was also abolished by treatment with KMP6 or hesperidin. KMP6 and hesperidin inhibited SCF-induced p38 MAPK activation. In addition, SCF-induced inflammatory cytokine production was significantly inhibited by treatment with KMP6 or hesperidin (P<0.05). Our results show for the first time that KMP6 potently regulates SCF-induced migration, p38 MAPK activation and inflammatory cytokines production through hindrance of SCF and c-kit binding in RPMCs. Such modulation may have functional consequences during KMP6 treatment, especially mast cell-mediated allergic inflammation disorders

    Activation of Thromboxane A2 Receptor (TP) Increases the Expression of Monocyte Chemoattractant Protein -1 (MCP-1)/Chemokine (C-C motif) Ligand 2 (CCL2) and Recruits Macrophages to Promote Invasion of Lung Cancer Cells

    Get PDF
    Thromboxane synthase (TXAS) and thromboxane A2 receptor (TP), two critical components for thromboxane A2 (TXA2) signaling, have been suggested to be involved in cancer invasion and metastasis. However, the mechanisms by which TXA2 promotes these processes are still unclear. Here we show that TXA2 mimetic, I-BOP, induced monocyte chemoattractant protein -1(MCP-1)/chemokine (C-C motif) ligand 2 (CCL2) expression at both mRNA and protein levels in human lung adenocarcinoma A549 cells stably over-expressing TP receptor α isoform (A549-TPα). The induction of MCP-1 was also found in other lung cancer cells H157 and H460 that express relatively high levels of endogenous TP. Using specific inhibitors of several signaling molecules and promoter/luciferase assay, we identified that transcription factor SP1 mediates I-BOP-induced MCP-1 expression. Furthermore, supernatants from I-BOP-treated A549-TPα cells enhanced MCP-1-dependent migration of RAW 264.7 macrophages. Moreover, co-culture of A549 cells with RAW 264.7 macrophages induced expression of MMPs, VEGF and MCP-1 genes, and increased the invasive potential in A549 cells. These findings suggest that TXA2 may stimulate invasion of cancer cells through MCP-1-mediated macrophage recruitment

    Degenerate T-cell Recognition of Peptides on MHC Molecules Creates Large Holes in the T-cell Repertoire

    Get PDF
    The cellular immune system screens peptides presented by host cells on MHC molecules to assess if the cells are infected. In this study we examined whether the presented peptides contain enough information for a proper self/nonself assessment by comparing the presented human (self) and bacterial or viral (nonself) peptides on a large number of MHC molecules. For all MHC molecules tested, only a small fraction of the presented nonself peptides from 174 species of bacteria and 1000 viral proteomes (0.2%) is shown to be identical to a presented self peptide. Next, we use available data on T-cell receptor-peptide-MHC interactions to estimate how well T-cells distinguish between similar peptides. The recognition of a peptide-MHC by the T-cell receptor is flexible, and as a result, about one-third of the presented nonself peptides is expected to be indistinguishable (by T-cells) from presented self peptides. This suggests that T-cells are expected to remain tolerant for a large fraction of the presented nonself peptides, which provides an explanation for the “holes in the T-cell repertoire” that are found for a large fraction of foreign epitopes. Additionally, this overlap with self increases the need for efficient self tolerance, as many self-similar nonself peptides could initiate an autoimmune response. Degenerate recognition of peptide-MHC-I complexes by T-cells thus creates large and potentially dangerous overlaps between self and nonself

    Role of Calcitonin Gene-Related Peptide in Bone Repair after Cyclic Fatigue Loading

    Get PDF
    Calcitonin gene related peptide (CGRP) is a neuropeptide that is abundant in the sensory neurons which innervate bone. The effects of CGRP on isolated bone cells have been widely studied, and CGRP is currently considered to be an osteoanabolic peptide that has effects on both osteoclasts and osteoblasts. However, relatively little is known about the physiological role of CGRP in-vivo in the skeletal responses to bone loading, particularly fatigue loading.We used the rat ulna end-loading model to induce fatigue damage in the ulna unilaterally during cyclic loading. We postulated that CGRP would influence skeletal responses to cyclic fatigue loading. Rats were fatigue loaded and groups of rats were infused systemically with 0.9% saline, CGRP, or the receptor antagonist, CGRP(8-37), for a 10 day study period. Ten days after fatigue loading, bone and serum CGRP concentrations, serum tartrate-resistant acid phosphatase 5b (TRAP5b) concentrations, and fatigue-induced skeletal responses were quantified. We found that cyclic fatigue loading led to increased CGRP concentrations in both loaded and contralateral ulnae. Administration of CGRP(8-37) was associated with increased targeted remodeling in the fatigue-loaded ulna. Administration of CGRP or CGRP(8-37) both increased reparative bone formation over the study period. Plasma concentration of TRAP5b was not significantly influenced by either CGRP or CGRP(8-37) administration.CGRP signaling modulates targeted remodeling of microdamage and reparative new bone formation after bone fatigue, and may be part of a neuronal signaling pathway which has regulatory effects on load-induced repair responses within the skeleton

    Genetic and Structural Basis for Selection of a Ubiquitous T Cell Receptor Deployed in Epstein-Barr Virus Infection

    Get PDF
    Despite the ∼1018 αβ T cell receptor (TCR) structures that can be randomly manufactured by the human thymus, some surface more frequently than others. The pinnacles of this distortion are public TCRs, which exhibit amino acid-identical structures across different individuals. Public TCRs are thought to result from both recombinatorial bias and antigen-driven selection, but the mechanisms that underlie inter-individual TCR sharing are still largely theoretical. To examine this phenomenon at the atomic level, we solved the co-complex structure of one of the most widespread and numerically frequent public TCRs in the human population. The archetypal AS01 public TCR recognizes an immunodominant BMLF1 peptide, derived from the ubiquitous Epstein-Barr virus, bound to HLA-A*0201. The AS01 TCR was observed to dock in a diagonal fashion, grasping the solvent exposed peptide crest with two sets of complementarity-determining region (CDR) loops, and was fastened to the peptide and HLA-A*0201 platform with residue sets found only within TCR genes biased in the public response. Computer simulations of a random V(D)J recombination process demonstrated that both TCRα and TCRβ amino acid sequences could be manufactured easily, thereby explaining the prevalence of this receptor across different individuals. Interestingly, the AS01 TCR was encoded largely by germline DNA, indicating that the TCR loci already comprise gene segments that specifically recognize this ancient pathogen. Such pattern recognition receptor-like traits within the αβ TCR system further blur the boundaries between the adaptive and innate immune systems

    Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution

    Get PDF
    The quest to determine how precise neural activity patterns mediate computation, behavior, and pathology would be greatly aided by a set of tools for reliably activating and inactivating genetically targeted neurons, in a temporally precise and rapidly reversible fashion. Having earlier adapted a light-activated cation channel, channelrhodopsin-2 (ChR2), for allowing neurons to be stimulated by blue light, we searched for a complementary tool that would enable optical neuronal inhibition, driven by light of a second color. Here we report that targeting the codon-optimized form of the light-driven chloride pump halorhodopsin from the archaebacterium Natronomas pharaonis (hereafter abbreviated Halo) to genetically-specified neurons enables them to be silenced reliably, and reversibly, by millisecond-timescale pulses of yellow light. We show that trains of yellow and blue light pulses can drive high-fidelity sequences of hyperpolarizations and depolarizations in neurons simultaneously expressing yellow light-driven Halo and blue light-driven ChR2, allowing for the first time manipulations of neural synchrony without perturbation of other parameters such as spiking rates. The Halo/ChR2 system thus constitutes a powerful toolbox for multichannel photoinhibition and photostimulation of virally or transgenically targeted neural circuits without need for exogenous chemicals, enabling systematic analysis and engineering of the brain, and quantitative bioengineering of excitable cells

    Deregulation of CREB Signaling Pathway Induced by Chronic Hyperglycemia Downregulates NeuroD Transcription

    Get PDF
    CREB mediates the transcriptional effects of glucose and incretin hormones in insulin-target cells and insulin-producing β-cells. Although the inhibition of CREB activity is known to decrease the β-cell mass, it is still unknown what factors inversely alter the CREB signaling pathway in β-cells. Here, we show that β-cell dysfunctions occurring in chronic hyperglycemia are not caused by simple inhibition of CREB activity but rather by the persistent activation of CREB due to decreases in protein phophatase PP2A. When freshly isolated rat pancreatic islets were chronically exposed to 25 mM (high) glucose, the PP2A activity was reduced with a concomitant increase in active pCREB. Brief challenges with 15 mM glucose or 30 µM forskolin after 2 hour fasting further increased the level of pCREB and consequently induced the persistent expression of ICER. The excessively produced ICER was sufficient to repress the transcription of NeuroD, insulin, and SUR1 genes. In contrast, when islets were grown in 5 mM (low) glucose, CREB was transiently activated in response to glucose or forskolin stimuli. Thus, ICER expression was transient and insufficient to repress those target genes. Importantly, overexpression of PP2A reversed the adverse effects of chronic hyperglycemia and successfully restored the transient activation of CREB and ICER. Conversely, depletion of PP2A with siRNA was sufficient to disrupt the negative feedback regulation of CREB and induce hyperglycemic phenotypes even under low glucose conditions. Our findings suggest that the failure of the negative feedback regulation of CREB is the primary cause for β-cell dysfunctions under conditions of pathogenic hyperglycemia, and PP2A can be a novel target for future therapies aiming to protect β-cells mass in the late transitional phase of non-insulin dependent type 2 diabetes (NIDDM)
    corecore