3 research outputs found

    Automated Algebraic Reasoning for Collections and Local Variables with Lenses

    Get PDF
    Lenses are a useful algebraic structure for giving a unifying semantics to program variables in a variety of store models. They support efficient automated proof in the Isabelle/UTP verification framework. In this paper, we expand our lens library with (1) dynamic lenses, that support mutable indexed collections, such as arrays, and (2) symmetric lenses, that allow partitioning of a state space into disjoint local and global regions to support variable scopes. From this basis, we provide an enriched program model in Isabelle/UTP for collection variables and variable blocks. For the latter, we adopt an approach first used by Back and von Wright, and derive weakest precondition and Hoare calculi. We demonstrate several examples, including verification of insertion sor

    Hybrid Relations in Isabelle/UTP

    Get PDF
    We describe our UTP theory of hybrid relations, which extends the relational calculus with continuous variables and differential equations. This enables the use of UTP in modelling and verification of hybrid systems, supported by our mechanisation in Isabelle/UTP. The hybrid relational calculus is built upon the same foundation as the UTP’s theory of reactive processes, which is accomplished through a generalised trace algebra and a model of piecewise-continuous functions. From this foundation, we give semantics to hybrid programs, including ordinary differential equations and preemption, and show how the theory can be used to reason about sequential hybrid systems

    A Calculus of Space, Time, and Causality: its Algebra, Geometry, Logic

    Get PDF
    The calculus formalises human intuition and common sense about space, time, and causality in the natural world. Its intention is to assist in the design and implementation of programs, of programming languages, and of interworking by tool chains that support rational program development. The theses of this paper are that Concurrent Kleene Algebra (CKA) is the algebra of programming, that the diagrams of the Unified Modeling Language provide its geometry, and that Unifying Theories of Program- ming (UTP) provides its logic. These theses are illustrated by a fomalisation of features of the first concurrent object-oriented language, Simula 67. Each level of the calculus is a conservative extension of its predecessor. We conclude the paper with an extended section on future research directions for developing and applying UTP, CKA, and our calculus, and on how we propose to implement our algebra, geometry, and logic
    corecore