5 research outputs found

    The activity of a yeast Family 16 methyltransferase, Efm2, is affected by a conserved tryptophan and its N-terminal region

    No full text
    © 2016 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. The Family 16 methyltransferases are a group of eukaryotic nonhistone protein methyltransferases. Sixteen of these have recently been described in yeast and human, but little is known about their sequence and structural features. Here we investigate one of these methyltransferases, Saccharomyces cerevisiae elongation factor methyltransferase 2 (Efm2), by site-directed mutagenesis and truncation. We show that an active site-associated tryptophan, invariant in Family 16 methyltransferases and at position 222 in Efm2, is important for methyltransferase activity. A second highly conserved tryptophan, at position 318 in Efm2, is likely involved in S-adenosyl methionine binding but is of lesser consequence for catalysis. By truncation analysis, we show that the N-terminal 50–200 amino acids of Efm2 are critical for its methyltransferase activity. As N-terminal regions are variable among Family 16 methyltransferases, this suggests a possible role in determining substrate specificity. This is consistent with recently solved structures that show the core of Family 16 methyltransferases to be near-identical but the N termini to be structurally quite different. Finally, we show that Efm2 can exist as an oligomer but that its N terminus is not necessary for oligomerisation to occur

    MS2-Deisotoper: A Tool for Deisotoping High-Resolution MS/MS Spectra in Normal and Heavy Isotope-Labelled Samples

    No full text
    High-resolution MS/MS spectra of peptides can be deisotoped to identify monoisotopic masses of peptide fragments. The use of such masses should improve protein identification rates. However, deisotoping is not universally used and its benefits have not been fully explored. Here, MS2-Deisotoper, a tool for use prior to database search, is used to identify monoisotopic peaks in centroided MS/MS spectra. MS2-Deisotoper works by comparing the mass and relative intensity of each peptide fragment peak to every other peak of greater mass, and by applying a set of rules concerning mass and intensity differences. After comprehensive parameter optimization, it is shown that MS2-Deisotoper can improve the number of peptide spectrum matches (PSMs) identified by up to 8.2% and proteins by up to 2.8%. It is effective with SILAC and non-SILAC MS/MS data. The identification of unique peptide sequences is also improved, increasing the number of human proteoforms by 3.7%. Detailed investigation of results shows that deisotoping increases Mascot ion scores, improves FDR estimation for PSMs, and leads to greater protein sequence coverage. At a peptide level, it is found that the efficacy of deisotoping is affected by peptide mass and charge. MS2-Deisotoper can be used via a user interface or as a command-line tool

    Eukaryote-ConservedMethylarginine Is Absent in Diplomonads and Functionally Compensated in Giardia

    Get PDF
    Methylation is a common posttranslational modification of arginine and lysine in eukaryotic proteins. Methylproteomes are best characterized for higher eukaryotes, where they are functionally expanded and evolved complex regulation. However, this is not the case for protist species evolved from the earliest eukaryotic lineages. Here, we integrated bioinformatic, proteomic, and drug-screening data sets to comprehensively explore the methylproteome of Giardia duodenalis-a deeply branching parasitic protist. We demonstrate that Giardia and related diplomonads lack arginine-methyltransferases and have remodeled conserved RGG/RG motifs targeted by these enzymes. We also provide experimental evidence for methylarginine absence in proteomes of Giardia but readily detect methyllysine. We bioinformatically infer 11 lysine-methyltransferases in Giardia, including highly diverged Su(var)3-9, Enhancer-of-zeste and Trithorax proteins with reduced domain architectures, and novel annotations demonstrating conserved methyllysine regulation of eukaryotic elongation factor 1 alpha. Using mass spectrometry, we identify more than 200 methyllysine sites in Giardia, including in species-specific gene families involved in cytoskeletal regulation, enriched in coiled-coil features. Finally, we use known methylation inhibitors to show that methylation plays key roles in replication and cyst formation in this parasite. This study highlights reduced methylation enzymes, sites, and functions early in eukaryote evolution, including absent methylarginine networks in the Diplomonadida. These results challenge the view that arginine methylation is eukaryote conserved and demonstrate that functional compensation of methylarginine was possible preceding expansion and diversification of these key networks in higher eukaryotes
    corecore