7,789 research outputs found
Immature dendritic cells induce hyporesponsiveness to alloantigens in vitro and prolong mouse cardiac allograft survival
Costimulatory molecule-deficient dendritic cell progenitors induce T cell hyporesponsiveness in vitro and prolong the survival of vascularized cardiac allografts
Donor pretreatment with FLT-3 ligand augments anti-donor CTL, NK and LAK cell activities within liver allografts and alters the pattern of intragraft apoptotic activity
Growth of donor-derived dendritic cells from the bone marrow of murine liver auograft recipients in response to granulocyte/macrophage colony-stimulating factor
Allografts of the liver, which has a comparatively heavy leukocyte content compared with other vascularized organs, are accepted permanently across major histocompatibility complex barriers in many murine strain combinations without immunosuppressive therapy. It has been postulated that this inherent tolerogenicity of the liver may be a consequence of the migration and perpetuation within host lymphoid tissues of potentially tolerogenic donor-derived ("chimeric") leukocytes, in particular, the precursors of chimeric dendritic cells (DC). In this study, we have used granulocyte/macrophage colony-stimulating factor to induce the propagation of progenitors that give rise to DC (CD45+, CDllc+, 33D1+, nonlymphoid dendritic cell 145 +, major histocompatibility complex class II+, B7-1+) in li-tuid cultures of murine bone marrow cells. Using this technique, together with immunocytochemical and molecular methods, we show that, in addition to cells expressing female host (C3H) phenotype (H-2Kk+; I-E+; Y chromosome-), a minor population of male donor (B10)-derived cells (H-2Kb+; I-A+; Y chromosome+) can also be grown in 10-d DC cultures from the bone marrow of liver allograft recipients 14 d after transplant. Highly purified nonlymphoid dendritic cell 145+ DC sorted from these bone marrow-derived cell cultures were shown to comprise ~1-10% cells of donor origin (Y chromosome +) by polymerase chain reaction analysis. In addition, sorted DC stimulated naive, recipient strain T lymphocytes in primary mixed leukocyte cultures. Evidence was also obtained for the growth of donor-derived cells from the spleen but not the thymus. In contrast, donor ceils could not be propagated from the bone marrow or other lymphoid tissues of nonimmunosuppressed C3H mice rejecting cardiac allografrs from the same donor strain (B10). These findings provide a basis for the establishment and perpetuation of cell chimerism after organ transplantation. © 1995, Rockefeller University Press., All rights reserved
The use of MHC class I or class II 'knock out' mice to investigate the role of these antigens in allosensitization
Propagation of cells expressing donor phenotype (MHC class I, II and Y- chromosome) from the bone marrow of murine liver allograft recipients in response to GM-CSF in vitro
Liver graft induced donor specific unresponsiveness without class I and/or class II antigen differences.
The role of antibodies in liver graft-induced tolerance in mice: Passive transfer of serum and effect of recipient B-cell depletion
Structural phase transition in IrTe: A combined study of optical spectroscopy and band structure calculations
IrPtTe is an interesting system showing competing phenomenon
between structural instability and superconductivity. Due to the large atomic
numbers of Ir and Te, the spin-orbital coupling is expected to be strong in the
system which may lead to nonconventional superconductivity. We grew single
crystal samples of this system and investigated their electronic properties. In
particular, we performed optical spectroscopic measurements, in combination
with density function calculations, on the undoped compound IrTe in an
effort to elucidate the origin of the structural phase transition at 280 K. The
measurement revealed a dramatic reconstruction of band structure and a
significant reduction of conducting carriers below the phase transition. We
elaborate that the transition is not driven by the density wave type
instability but caused by the crystal field effect which further
splits/separates the energy levels of Te (p, p) and Te p bands.Comment: 16 pages, 5 figure
- …
