9 research outputs found

    Daily 30-min exposure to artificial gravity during 60 days of bed rest does not maintain aerobic exercise capacity but mitigates some deteriorations of muscle function: results from the AGBRESA RCT

    Get PDF
    Purpose: Spaceflight impairs physical capacity. Here we assessed the protective effect of artificial gravity (AG) on aerobic exercise capacity and muscle function during bed rest, a spaceflight analogue. Methods: 24 participants (33 ± 9 years, 175 ± 9 cm, 74 ± 10 kg, 8 women) were randomly allocated to one of three groups: continuous AG (cAG), intermittent AG (iAG) or control (CTRL). All participants were subjected to 60 days of six-degree head-down tilt bed rest, and subjects of the intervention groups completed 30 min of centrifugation per day: cAG continuously and iAG for 6 × 5 min, with an acceleration of 1g at the center of mass. Physical capacity was assessed before and after bed rest via maximal voluntary contractions, cycling spiroergometry, and countermovement jumps. Results: AG had no significant effect on aerobic exercise capacity, flexor muscle function and isometric knee extension strength or rate of force development (RFD). However, AG mitigated the effects of bed rest on jumping power (group * time interaction of the rmANOVA p < 0.001; iAG − 25%, cAG − 26%, CTRL − 33%), plantar flexion strength (group * time p = 0.003; iAG − 35%, cAG − 31%, CTRL − 48%) and plantar flexion RFD (group * time p = 0.020; iAG − 28%, cAG − 12%, CTRL − 40%). Women showed more pronounced losses than men in jumping power (p < 0.001) and knee extension strength (p = 0.010). Conclusion: The AG protocols were not suitable to maintain aerobic exercise capacity, probably due to the very low cardiorespiratory demand of this intervention. However, they mitigated some losses in muscle function, potentially due to the low-intensity muscle contractions during centrifugation used to avoid presyncope

    Maintenance of genome stability by Fanconi anemia proteins

    Get PDF

    Seed Priming of Trifolium repens L. Improved Germination and Early Seedling Growth on Heavy Metal-Contaminated Soil

    No full text
    Abstract Seed priming effects on Trifolium repens were analysed both in Petri dishes and in two soils (one unpolluted soil and a soil polluted with Cd and Zn). Priming treatments were performed with gibberellic acid 0.1 mM at 22 °C during 12 h or with polyethylene glycol (−6.7 MPa) at 10 °C during 72 h. Both priming treatments increased the germination speed and the final germination percentages in the presence of 100 ÎŒM CdCl2 or 1 mM ZnSO4. Flow cytometry analysis demonstrated that the positive effect of priming was not related with any advancement of the cell cycle in embryos. Seed imbibition occurred faster for primed seeds than for control seeds. X-ray and electronic microscopy analysis suggested that circular depressions on the seed coat, in addition to tissue detachments inside the seed, could be linked to the higher rate of imbibition. Priming treatments had no significant impact on the behaviour of seedlings cultivated on nonpolluted soil while they improved seedling emergence and growth on polluted soil. The two priming treatments reduced Zn accumulation. Priming with gibberellic acid increased Cd accumulation by young seedlings while priming with polyethylene glycol reduced it. Priming improved the light phase of photosynthesis and strengthened the antioxidant system of stressed seedlings. Optimal priming treatment may thus be recommended as efficient tools to facilitate revegetation of former mining area

    DNA-informed breeding of rosaceous crops: promises, progress and prospects

    No full text
    corecore