56 research outputs found

    Spine system equivalence: A new protocol for standardized multi-axis comparison tests

    Get PDF
    This is the final version of the paper.Accurately replicating the in-vivo loads of the spine is a critical aspect of in-vitro spine testing, but the complexity of this structure renders this challenging. The design and control capabilities of multi-axis spine systems vary considerably, and though recommendations have been made [1, 2], standardized in-vitro methods have not yet been established. As such, it is often difficult to compare different biomechanical studies [3]. The aim of this study was to use international standards [4, 5], and spine testing recommendations [1-3] to develop a standardized protocol for the evaluation of different multi-axis spinal test systems. The protocol was implemented on three six-axis spine systems, and the data used to establish stiffness and phase angle limits. [...]This research was supported by the Catherine Sharpe Foundation, the Enid Linder Foundation, the Higher Education Innovation Fund, and the University of Bath Alumni Fund

    The equivalence of multi-axis spine systems: Recommended stiffness limits using a standardized testing protocol

    Get PDF
    Author's accepted manuscriptFinal version available from Elsevier via the DOI in this recordThe complexity of multi-axis spine testing often makes it challenging to compare results from different studies. The aim of this work was to develop and implement a standardized testing protocol across three six-axis spine systems, compare them, and provide stiffness and phase angle limits against which other test systems can be compared. Standardized synthetic lumbar specimens (n = 5), comprising three springs embedded in polymer at each end, were tested on each system using pure moments in flexion–extension, lateral bending, and axial rotation. Tests were performed using sine and triangle waves with an amplitude of 8 Nm, a frequency of 0.1 Hz, and with axial preloads of 0 and 500 N. The stiffness, phase angle, and R2 value of the moment against rotation in the principal axis were calculated at the center of each specimen. The tracking error was adopted as a measure of each test system to minimize non-principal loads, defined as the root mean squared difference between actual and target loads. All three test systems demonstrated similar stiffnesses, with small (<14%) but significant differences in 4 of 12 tests. More variability was observed in the phase angle between the principal axis moment and rotation, with significant differences in 10 of 12 tests. Stiffness and phase angle limits were calculated based on the 95% confidence intervals from all three systems. These recommendations can be used with the standard specimen and testing protocol by other research institutions to ensure equivalence of different spine systems, increasing the ability to compare in vitro spine studies.This research was completed with the support of the Catherine Sharpe Foundation, the Enid Linder Foundation, and the University of Bath Alumni Fun

    Quantum phase transition in a single-molecule quantum dot

    Full text link
    Quantum criticality is the intriguing possibility offered by the laws of quantum mechanics when the wave function of a many-particle physical system is forced to evolve continuously between two distinct, competing ground states. This phenomenon, often related to a zero-temperature magnetic phase transition, can be observed in several strongly correlated materials such as heavy fermion compounds or possibly high-temperature superconductors, and is believed to govern many of their fascinating, yet still unexplained properties. In contrast to these bulk materials with very complex electronic structure, artificial nanoscale devices could offer a new and simpler vista to the comprehension of quantum phase transitions. This long-sought possibility is demonstrated by our work in a fullerene molecular junction, where gate voltage induces a crossing of singlet and triplet spin states at zero magnetic field. Electronic tunneling from metallic contacts into the C60\rm{C_{60}} quantum dot provides here the necessary many-body correlations to observe a true quantum critical behavior.Comment: 8 pages, 5 figure

    Torsional stability of interference screws derived from bovine bone - a biomechanical study

    Get PDF
    Introduction: It has been proposed that individual genetic variation contributes to the course of severe infections and sepsis. Recent studies of single nucleotide polymorphisms (SNPs) within the endotoxin receptor and its signaling system showed an association with the risk of disease development. This study aims to examine the response associated with genetic variations of TLR4, the receptor for bacterial LPS, and a central intracellular signal transducer (TIRAP/Mal) on cytokine release and for susceptibility and course of severe hospital acquired infections in distinct patient populations. Methods: Three intensive care units in tertiary care university hospitals in Greece and Germany participated. 375 and 415 postoperative patients and 159 patients with ventilator associated pneumonia (VAP) were included. TLR4 and TIRAP/Mal polymorphisms in 375 general surgical patients were associated with risk of infection, clinical course and outcome. In two prospective studies, 415 patients following cardiac surgery and 159 patients with newly diagnosed VAP predominantly caused by Gram-negative bacteria were studied for cytokine levels in-vivo and after ex-vivo monocyte stimulation and clinical course. Results: Patients simultaneously carrying polymorphisms in TIRAP/Mal and TLR4 and patients homozygous for the TIRAP/Mal SNP had a significantly higher risk of severe infections after surgery (odds ratio (OR) 5.5; confidence interval (CI): 1.34 - 22.64; P = 0.02 and OR: 7.3; CI: 1.89 - 28.50; P < 0.01 respectively). Additionally we found significantly lower circulating cytokine levels in double-mutant individuals with ventilator associated pneumonia and reduced cytokine production in an ex-vivo monocyte stimulation assay, but this difference was not apparent in TIRAP/Mal-homozygous patients. In cardiac surgery patients without infection, the cytokine release profiles were not changed when comparing different genotypes. Conclusions: Carriers of mutations in sequential components of the TLR signaling system may have an increased risk for severe infections. Patients with this genotype showed a decrease in cytokine release when infected which was not apparent in patients with sterile inflammation following cardiac surgery

    A Mapping of Drug Space from the Viewpoint of Small Molecule Metabolism

    Get PDF
    Small molecule drugs target many core metabolic enzymes in humans and pathogens, often mimicking endogenous ligands. The effects may be therapeutic or toxic, but are frequently unexpected. A large-scale mapping of the intersection between drugs and metabolism is needed to better guide drug discovery. To map the intersection between drugs and metabolism, we have grouped drugs and metabolites by their associated targets and enzymes using ligand-based set signatures created to quantify their degree of similarity in chemical space. The results reveal the chemical space that has been explored for metabolic targets, where successful drugs have been found, and what novel territory remains. To aid other researchers in their drug discovery efforts, we have created an online resource of interactive maps linking drugs to metabolism. These maps predict the “effect space” comprising likely target enzymes for each of the 246 MDDR drug classes in humans. The online resource also provides species-specific interactive drug-metabolism maps for each of the 385 model organisms and pathogens in the BioCyc database collection. Chemical similarity links between drugs and metabolites predict potential toxicity, suggest routes of metabolism, and reveal drug polypharmacology. The metabolic maps enable interactive navigation of the vast biological data on potential metabolic drug targets and the drug chemistry currently available to prosecute those targets. Thus, this work provides a large-scale approach to ligand-based prediction of drug action in small molecule metabolism

    Metallic, magnetic and molecular nanocontacts

    Get PDF
    Scanning tunnelling microscopy and break-junction experiments realize metallic and molecular nanocontacts that act as ideal one-dimensional channels between macroscopic electrodes. Emergent nanoscale phenomena typical of these systems encompass structural, mechanical, electronic, transport, and magnetic properties. This Review focuses on the theoretical explanation of some of these properties obtained with the help of first-principles methods. By tracing parallel theoretical and experimental developments from the discovery of nanowire formation and conductance quantization in gold nanowires to recent observations of emergent magnetism and Kondo correlations, we exemplify the main concepts and ingredients needed to bring together ab initio calculations and physical observations. It can be anticipated that diode, sensor, spin-valve and spin-filter functionalities relevant for spintronics and molecular electronics applications will benefit from the physical understanding thus obtained

    Development of a rapid matrix digestion technique for ultrastructural analysis of elastic fibers in the intervertebral disc.

    Full text link
    Collagen and elastic fibers are two major fibrous constituents of the annulus fibrosus (AF) in the disc that contribute to its mechanical and viscoelastic properties. It was thought that elastic fibers play no substantial role in the function and properties of the disc as these fibers were irregularly distributed. Studies that have revealed highly organized elastic fibers with different regional orientation and distribution, while being strongly crosslinked with matrix, suggesting their contribution to disc structure-function properties. These studies that were performed by light microscopic analysis of histologically prepared samples, have not been able to reveal the fine-scale architectural details of the elastic fiber network. Since elastic fibers are intermingled with other fibrous components of the disc and mostly obscured by the extracellular matrix, it is difficult to demonstrate their ultra-structural organization using scanning electron microscopy (SEM). Therefore the aim of this study was to develop a rapid matrix digestion technique for ultrastructural analysis of the disc elastic fibers. This study provides a new method for fundamental visualization of elastic fibers and their architecture in the disc. Through the ultra-structural analysis, the relationship between structure and function, as well as the role of elastic fibers on AF mechanical properties can be studied. This method may be used to develop a three-dimensional map of elastic fibers distribution within the disc, which would provide valuable information for designing tissue engineered scaffolds for AF repair and replacement

    New insights into the viscoelastic and failure mechanical properties of the elastic fiber network of the inter-lamellar matrix in the annulus fibrosus of the disc.

    Full text link
    The mechanical role of elastic fibers in the inter-lamellar matrix (ILM) is unknown; however, it has been suggested that they play a role in providing structural integrity to the annulus fibrosus (AF). Therefore, the aim of this study was to measure the viscoelastic and failure properties of the elastic fiber network in the ILM of ovine discs under both tension and shear directions of loading. Utilizing a technique, isolated elastic fibers within the ILM from ovine discs were stretched to 40% of their initial length at three strain rates of 0.1% s-1 (slow), 1% s-1 (medium) and 10% s-1 (fast), followed by a ramp test to failure at 10% s-1. A significant strain-rate dependent response was found, particularly at the fastest rate for phase angle and normalized stiffness (p < 0.001). The elastic fibers in the ILM demonstrated a significantly higher capability for energy absorption at slow compared to medium and fast strain rates (p < 0.001). These finding suggests that the elastic fiber network of the ILM exhibits nonlinear elastic behavior. When tested to failure, a significantly higher normalized failure force was found in tension compared to shear loading (p = 0.011), which is consistent with the orthotropic structure of elastic fibers in the ILM. The results of this study confirmed the mechanical contribution of the elastic fiber network to the ILM and the structural integrity of the AF. This research serves as a foundation for future studies to investigate the relationship between degeneration and ILM mechanical properties. STATEMENT OF SIGNIFICANCE: The mechanical role of elastic fibres in the inter-lamellar matrix (ILM) of the disc is unknown. The viscoelastic and failure properties of the elastic fibre network in the ILM in both tension and shear directions of loading was measured for the first time. We found a strain-rate dependent response for the elastic fibres in the ILM. The elastic fibres in the ILM demonstrated a significantly higher capability for energy absorption at slow compared to medium and fast strain rates. When tested to failure, a significantly higher normalized failure force was found in tension compared to shear loading, which is consistent with the orthotropic structure of elastic fibres in the ILM

    Ultrastructural organization of elastic fibres in the partition boundaries of the annulus fibrosus within the intervertebral disc.

    Full text link
    The relationship between elastic fibre disorders and disc degeneration, aging and progression of spine deformity have been discussed in a small number of studies. However, the clinical relevance of elastic fibres in the annulus fibrosus (AF) of the disc is poorly understood. Ultrastructural visualization of elastic fibres is an important step towards understanding their structure-function relationship. In our previous studies, a novel technique for visualization of elastic fibres across the AF was presented and their ultrastructural organization in intra- and inter-lamellar regions was compared. Using the same novel technique in the present study, the ultrastructural organization of elastic fibres in the partition boundaries (PBs), which are located between adjacent collagen bundles, is presented for the first time. Visualization of elastic fibres in the PBs in control and partially digested (digested) samples was compared, and their orientation in two different cutting planes (transverse and oblique) were discussed. The ultrastructural analysis revealed that elastic fibres in PBs were a well-organized dense and complex network having different size and shape. Adjacent collagen bundles in a cross section (CS) lamella appear to be connected to each other, where elastic fibres in the PBs were merged in parallel or penetrated into the collagen bundles. There was no significant difference in directional coherency coefficient of elastic fibres between the two different cutting planes (p = .35). The present study revealed that a continuous network of elastic fibres may provide disc integrity by connecting adjacent bundles of CS lamellae together. Compared to our previous studies, the density of the elastic fibre network in PBs was lower, and fibre orientation was similar to the intra-lamellar space and inter-lamellar matrix. STATEMENT OF SIGNIFICANCE: A detailed ultrastructural study in the partition boundaries of the annulus fibrosus within the disc revealed a well-organized elastic fibre network with a complex ultrastructure. The continuous network of elastic fibres may provide disc integrity by connecting adjacent bundles of cross section lamellae together. The density of the elastic fibre network in PBs was lower, and fibre orientation was similar to the intra-lamellar space and the inter-lamellar matrix
    corecore