21 research outputs found

    Impact of Birth Weight and Early Infant Weight Gain on Insulin Resistance and Associated Cardiovascular Risk Factors in Adolescence

    Get PDF
    BACKGROUND: Low birth weight followed by accelerated weight gain during early childhood has been associated with adverse metabolic and cardiovascular outcomes later in life. The aim of this study was to examine the impact of early infant weight gain on glucose metabolism and cardiovascular risk factors in adolescence and to study if the effect differed between adolescents born small for gestational age (SGA) vs. appropriate for gestational age (AGA). METHODOLOGY/PRINCIPAL FINDINGS: Data from 30 SGA and 57 AGA healthy young Danish adolescents were analysed. They had a mean age of 17.6 years and all were born at term. Data on early infant weight gain from birth to three months as well as from birth to one year were available in the majority of subjects. In adolescence, glucose metabolism was assessed by a simplified intravenous glucose tolerance test and body composition was assessed by dual-energy X-ray absorptiometry. Blood pressures as well as plasma concentrations of triglycerides and cholesterol were measured. Early infant weight gain from birth to three months was positively associated with the fasting insulin concentration, HOMA-IR, basal lipid levels and systolic blood pressure at 17 years. There was a differential effect of postnatal weight gain on HOMA-IR in AGA and SGA participants (P for interaction = 0.03). No significant associations were seen between postnatal weight gain and body composition or parameters of glucose metabolism assessed by the simplified intravenous glucose tolerance test. In subgroup analysis, all associations with early infant weight gain were absent in the AGA group, but the associations with basal insulin and HOMA-IR were still present in the SGA group. CONCLUSION: This study suggests that accelerated growth during the first three months of life may confer an increased risk of later metabolic disturbances--particularly of glucose metabolism--in individuals born SGA

    Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure

    Full text link

    Leanness in postnatally nutritionally programmed rats is associated with increased sensitivity to leptin and a melanocortin receptor agonist and decreased sensitivity to neuropeptide y

    No full text
    BACKGROUND: Pups of normally nourished dams that are cross-fostered after birth to dams fed a low-protein (8% by weight) diet (postnatal low protein (PLP)) grow slower during the suckling period and remain small and lean throughout adulthood. At weaning, they have increased expression in the arcuate nucleus (ARC) of the hypothalamus of the orexigenic neuropeptide Y (NPY) and decreased expression of pro-opiomelanocortin, the precursor of anorexigenic melanocortins. OBJECTIVES AND METHODS: We investigated, using third ventricle administration, whether 3-month-old male PLP rats display altered sensitivity to leptin with respect to food intake, NPY and the melanocortin 3/4-receptor agonist MTII, and using in situ hybridization or laser capture microdissection of the ARC followed by RT-PCR, whether the differences observed were associated with changes in the hypothalamic expression of NPY or the leptin receptor, NPY receptors and melanocortin receptors. RESULTS: PLP rats were smaller and had reduced percentage body fat content and plasma leptin concentration compared with control rats. Leptin (5 μg) reduced food intake over 0-48 h more in PLP than control rats (P<0.05). Submaximal doses of NPY increased the food intake less in PLP rats than in controls, whereas submaximal doses of MTII reduced the food intake more in PLP rats. Maximal responses did not differ between PLP and control rats. Leptin and melanocortin-3 receptor (MC3R) expression were increased in both ARC and ventromedial hypothalamic nuclei in PLP animals compared with the controls. MC4R, NPY Y1R, Y5R and NPY expression were unchanged. CONCLUSION: Postnatal undernourishment results in food intake in adult rats being more sensitive to reduction by leptin and melanocortins, and less sensitive to stimulation by NPY. We propose that this contributes to increased leptin sensitivity and resistance to obesity. Increased expression of ObRb and MC3R may partly explain these findings but other downstream mechanisms must also be involved.We would like to thank David Hislop, Anita Roberts, Adrian Wayman and Delia Hawkes for their excellent technical support. This work was supported by an Industrial partnered BBSRC (from the Biotechnology and Biological Sciences Research Council, UK) research grant E007821/1 and E00797X/1. SEO is a British Heart Foundation Senior Fellow
    corecore