7 research outputs found

    Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol.

    Get PDF
    Chloroplasts are bounded by a pair of outer membranes, the envelope, that is the only permanent membrane structure of the different types of plastids. Chloroplasts have had a long and complex evolutionary past and integration of the envelope membranes in cellular functions is the result of this evolution. Plastid envelope membranes contain a wide diversity of lipids and terpenoid compounds serving numerous biochemical functions and the flexibility of their biosynthetic pathways allow plants to adapt to fluctuating environmental conditions (for instance phosphate deprivation). A large body of knowledge has been generated by proteomic studies targeted to envelope membranes, thus revealing an unexpected complexity of this membrane system. For instance, new transport systems for metabolites and ions have been identified in envelope membranes and new routes for the import of chloroplast-specific proteins have been identified. The picture emerging from our present understanding of plastid envelope membranes is that of a key player in plastid biogenesis and the co-ordinated gene expression of plastid-specific protein (owing to chlorophyll precursors), of a major hub for integration of metabolic and ionic networks in cell metabolism, of a flexible system that can divide, produce dynamic extensions and interact with other cell constituents. Envelope membranes are indeed one of the most complex and dynamic system within a plant cell. In this review, we present an overview of envelope constituents together with recent insights into the major functions fulfilled by envelope membranes and their dynamics within plant cells

    Plastid Transient and Stable Interactions with Other Cell Compartments

    No full text
    International audiencePlastids are organelles delineated by two envelopes that play important roles in different cellular processes such as energy production or lipid biosynthesis. To regulate their biogenesis and their function, plastids have to communicate with other cellular compartments. This communication can be mediated by signaling molecules and by the establishment of direct contacts between the plastid envelope and other organelles such as the endoplasmic reticulum, the mitochondria, the plasma membrane, the peroxisomes and the nucleus. These interactions are highly dynamic and respond to different biotic and abiotic stresses. However, the mechanisms involved in the formation of plastid-organelle contact sites and their functions are still enigmatic. In this chapter, we summarize our current knowledge about plastid contact sites and their role in the regulation of plastid biogenesis and function

    Deciphering the roles of acyl-CoA-binding proteins in plant cells

    No full text

    Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol

    No full text
    corecore