22,234 research outputs found

    On the characteristics of emulsion chamber family events produced in low heights

    Get PDF
    The uncertainty of the primary cosmic ray composition at 10 to the 14th power -10 to the 16th power eV is well known to make the study of the nuclear interaction mechanism more difficult. Experimentally considering, if one can identify effectively the family events which are produced in low heights, then an event sample induced by primary protons might be able to be separated. It is undoubtedly very meaningful. In this paper an attempt is made to simulate the family events under the condition of mountain emulsion chamber experiments with a reasonable model. The aim is to search for the dependence of some experimentally observable quantities to the interaction height

    The Scaling of the Redshift Power Spectrum: Observations from the Las Campanas Redshift Survey

    Full text link
    In a recent paper we have studied the redshift power spectrum PS(k,μ)P^S(k,\mu) in three CDM models with the help of high resolution simulations. Here we apply the method to the largest available redshift survey, the Las Campanas Redshift Survey (LCRS). The basic model is to express PS(k,μ)P^S(k,\mu) as a product of three factors P^S(k,\mu)=P^R(k)(1+\beta\mu^2)^2 D(k,\mu). Here μ\mu is the cosine of the angle between the wave vector and the line of sight. The damping function DD for the range of scales accessible to an accurate analysis of the LCRS is well approximated by the Lorentz factor D=[1+{1\over 2}(k\mu\sigma_{12})^2]^{-1}. We have investigated different values for β\beta (β=0.4\beta=0.4, 0.5, 0.6), and measured PR(k)P^R(k) and σ12(k)\sigma_{12}(k) from PS(k,μ)P^S(k,\mu) for different values of μ\mu. The velocity dispersion σ12(k)\sigma_{12}(k) is nearly a constant from k=0.5k=0.5 to 3 \mpci. The average value for this range is 510\pm 70 \kms. The power spectrum PR(k)P^R(k) decreases with kk approximately with k−1.7k^{-1.7} for kk between 0.1 and 4 \mpci. The statistical significance of the results, and the error bars, are found with the help of mock samples constructed from a large set of high resolution simulations. A flat, low-density (Ω0=0.2\Omega_0=0.2) CDM model can give a good fit to the data, if a scale-dependent special bias scheme is used which we have called the cluster-under-weighted bias (Jing et al.).Comment: accepted for publication in MNRAS, 20 pages with 7 figure

    Dependency on the Ethanol Industry

    Get PDF
    The year 2008 will long be remembered as a year when corn based ethanol has seen tremendous change. The Energy Independence and Security Act, which passed in late 2007, gave a huge boost to the industry as it mandated an increase in biofuel production and use. In 2008, the industry witnessed record high prices on corn and crude oil. Ultimately, a big ethanol and distiller’s grain company--Vera Sun Energy-- filed for Chapter 11 bankruptcy leaving farmers with contracts wondering what will happen next. South Dakota is a major corn growing and ethanol producing state and this article assesses the relative magnitude of corn based ethanol on the local economy in terms of distribution of ethanol plants and corn disappearance ratios.ethanol, south dakota, farm policy

    Macroscopic Quantum Tunneling Effect of Z2 Topological Order

    Full text link
    In this paper, macroscopic quantum tunneling (MQT) effect of Z2 topological order in the Wen-Plaquette model is studied. This kind of MQT is characterized by quantum tunneling processes of different virtual quasi-particles moving around a torus. By a high-order degenerate perturbation approach, the effective pseudo-spin models of the degenerate ground states are obtained. From these models, we get the energy splitting of the ground states, of which the results are consistent with those from exact diagonalization methodComment: 25 pages, 14 figures, 4 table

    Aeromechanical stability analysis of COPTER

    Get PDF
    A plan was formed for developing a comprehensive, second-generation system with analytical capabilities for predicting performance, loads and vibration, handling qualities, aeromechanical stability, and acoustics. This second-generation system named COPTER (COmprehensive Program for Theoretical Evaluation of Rotorcraft) is designed for operational efficiency, user friendliness, coding readability, maintainability, transportability, modularity, and expandability for future growth. The system is divided into an executive, a data deck validator, and a technology complex. At present a simple executive, the data deck validator, and the aeromechanical stability module of the technology complex were implemented. The system is described briefly, the implementation of the technology module is discussed, and correlation data presented. The correlation includes hingeless-rotor isolated stability, hingeless-rotor ground-resonance stability, and air-resonance stability of an advanced bearingless-rotor in forward flight

    Effect of dipolar interactions on optical nonlinearity of two-dimensional nanocomposites

    Full text link
    In this work, we calculate the contribution of dipole-dipole interactions to the optical nonlinearity of the two-dimensional random ensemble of nanoparticles that possess a set of exciton levels, for example, quantum dots. The analytical expressions for the contributions in the cases of TM and TE-polarized light waves propagating along the plane are obtained. It is shown that the optical nonlinearity, caused by the dipole-dipole interactions in the planar ensemble of the nanoparticles, is several times smaller than the similar nonlinearity of the bulk nanocomposite. This type of optical nonlinearity is expected to be observed at timescales much larger than the quantum dot exciton rise time. The proposed method may be applied to various types of the nanocomposite shapes.Comment: 8 page

    Halo Mass Profiles and Low Surface Brightness Galaxies Rotation Curves

    Full text link
    A recent study has claimed that the rotation curve shapes and mass densities of Low Surface Brightness (LSB) galaxies are largely consistent with Λ\LambdaCDM predictions, in contrast to a large body of observational work. I demonstrate that the method used to derive this conclusion is incapable of distinguishing the characteristic steep CDM mass-density distribution from the core-dominated mass-density distributions found observationally: even core-dominated pseudo-isothermal haloes would be inferred to be consistent with CDM. This method can therefore make no definitive statements on the (dis)agreement between the data and CDM simulations. After introducing an additional criterion that does take the slope of the mass-distribution into account I find that only about a quarter of the LSB galaxies investigated are possibly consistent with CDM. However, for most of these the fit parameters are so weakly constrained that this is not a strong conclusion. Only 3 out of 52 galaxies have tightly constrained solutions consistent with Λ\LambdaCDM. Two of these galaxies are likely dominated by stars, leaving only one possible dark matter dominated, CDM-consistent candidate, forming a mere 2 per cent of the total sample. These conclusions are based on comparison of data and simulations at identical radii and fits to the entire rotation curves. LSB galaxies that are consistent with CDM simulations, if they exist, seem to be rare indeed.Comment: Accepted for publication in Astrophysical Journa
    • …
    corecore