51,523 research outputs found

    Event-by-event simulation of the Hanbury Brown-Twiss experiment with coherent light

    Full text link
    We present a computer simulation model for the Hanbury Brown-Twiss experiment that is entirely particle-based and reproduces the results of wave theory. The model is solely based on experimental facts, satisfies Einstein's criterion of local causality and does not require knowledge of the solution of a wave equation. The simulation model is fully consistent with earlier work and provides another demonstration that it is possible to give a particle-only description of wave phenomena, rendering the concept of wave-particle duality superfluous.Comment: Submitted to Commmun. Comput. Phy

    Finite-temperature charge transport in the one-dimensional Hubbard model

    Get PDF
    We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain current autocorrelation functions from systems with as many as 18 sites, way beyond the range of standard exact diagonalization. Our data clearly suggest that the charge Drude weight vanishes with a power law as a function of system size. The low-frequency dependence of the conductivity is consistent with a finite dc value and thus with diffusion, despite large finite-size effects. Furthermore, we consider the mass-imbalanced Hubbard model for which the charge Drude weight decays exponentially with system size, as expected for a non-integrable model. We analyze the conductivity and diffusion constant as a function of the mass imbalance and we observe that the conductivity of the lighter component decreases exponentially fast with the mass-imbalance ratio. While in the extreme limit of immobile heavy particles, the Falicov-Kimball model, there is an effective Anderson-localization mechanism leading to a vanishing conductivity of the lighter species, we resolve finite conductivities for an inverse mass ratio of η≳0.25\eta \gtrsim 0.25.Comment: 13 pages, 11 figure
    • …
    corecore