358 research outputs found

    Dual-Balancing for Multi-Task Learning

    Full text link
    Multi-task learning (MTL), a learning paradigm to learn multiple related tasks simultaneously, has achieved great success in various fields. However, task balancing problem remains a significant challenge in MTL, with the disparity in loss/gradient scales often leading to performance compromises. In this paper, we propose a Dual-Balancing Multi-Task Learning (DB-MTL) method to alleviate the task balancing problem from both loss and gradient perspectives. Specifically, DB-MTL ensures loss-scale balancing by performing a logarithm transformation on each task loss, and guarantees gradient-magnitude balancing via normalizing all task gradients to the same magnitude as the maximum gradient norm. Extensive experiments conducted on several benchmark datasets consistently demonstrate the state-of-the-art performance of DB-MTL.Comment: Technical Repor

    BGO quenching effect on spectral measurements of cosmic-ray nuclei in DAMPE experiment

    Full text link
    The Dark Matter Particle Explorer (DAMPE) is a satellite-borne detector designed to measure high energy cosmic-rays and γ\gamma-rays. As a key sub-detector of DAMPE, the Bismuth Germanium Oxide (BGO) imaging calorimeter is utilized to measure the particle energy with a high resolution. The nonlinear fluorescence response of BGO for large ionization energy deposition, known as the quenching effect, results in an under-estimate of the energy measurement for cosmic-ray nuclei. In this paper, various models are employed to characterize the BGO quenching factors obtained from the experimental data of DAMPE. Applying the proper quenching model in the detector simulation process, we investigate the tuned energy responses for various nuclei and compare the results based on two different simulation softwares, i.e. GEANT4 and FLUKA. The BGO quenching effect results in a decrease of the measured energy by approximately 2.5%2.5\% (5.7%5.7 \%) for carbon (iron) at \sim10 GeV/n and <1%<1\% above 1 TeV/n, respectively. Accordingly, the correction of the BGO quenching effect leads to an increase of the low-energy flux measurement of cosmic-ray nuclei.Comment: 13 pages, 4 figures, to be published in Nuclear Inst. and Methods in Physics Research,

    Randomized, Double-Blind, and Placebo-Controlled Trial of Clenbuterol in Denervated Muscle Atrophy

    Get PDF
    Objectives. β2-adrenergic agonists, such as clenbuterol, have been shown to promote the hypertrophy of healthy skeletal muscles and to ameliorate muscle wasting in a few pathological conditions in both animals and humans. We intended to investigate the clinical efficacy of clenbuterol on attenuating denervation-induced muscle atrophy. Methods. A double-blind, placebo-controlled, parallel, and randomized trial was employed. 71 patients, suffering from brachial plexus injuries, were given either clenbuterol (60 μg, bid) or placebo for 3 months. Before and at the end of the study, patients were given physical examinations, biopsies of biceps brachii, electromyograms (EMGs), and other laboratory tests. Results. Compared with placebo treatment, clenbuterol significantly mitigated the decreases in cross-sectional areas of type I and II muscle fibers and alleviated the reduction in fibrillation potential amplitudes, without any adverse effects. Conclusions. Clenbuterol safely ameliorated denervated muscle atrophy in this cohort; thus larger clinical studies are encouraged for this or other β2 agonists on denervation-induced muscle atrophy

    Ultralong nitrogen/sulfur Co‐doped carbon nano‐hollow‐sphere chains with encapsulated cobalt nanoparticles for highly efficient oxygen electrocatalysis

    Get PDF
    The development of simple and effective strategies to prepare electrocatalysts, which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), is currently an urgent issue. Herein, an efficient bifunctional electrocatalyst featured by ultralong N, S-doped carbon nano-hollow-sphere chains about 1300 nm with encapsulated Co nanoparticles (Co-CNHSCs) is developed. The multifunctional catalytic properties of Co together with the heteroatom-induced charge redistribution (i.e., modulating the electronic structure of the active site) result in superior catalytic activities toward OER and ORR in alkaline media. The optimized catalyst Co-CNHSC-3 displays an outstanding electrocatalytic ability for ORR and OER, a high specific capacity of 1023.6 mAh gZn−1, and excellent reversibility after 80 h at 10 mA cm−2 in a Zn-air battery system. This work presents a new strategy for the design and synthesis of efficient multifunctional carbon-based catalysts for energy storage and conversion devices

    Human cytomegalovirus IE1 downregulates Hes1 in neural progenitor cells as a potential E3 ubiquitin ligase

    Get PDF
    This work was supported by: National Natural Science Foundation of China http://www.nsfc.gov.cn/; #81620108021: Fetal Brain Maldevelopment Caused by Sox2 Downregulation during Congenital Cytomegalovirus Infection; #31600145: The mechanism of HCMV-IE1 regulating Hes1 expression and rhythm in neural progenitor cells; #81571355: Construction of Murine Cytomegalovirus Derived viral tools for Specific Glia Tracing; #81271850: The regulation mechanism of HCMV infection on Notch signaling pathway in NPCs; and Sino-Africa Joint Research Center, Chinese Academy of Sciences http://www.sinafrica.cas.cn/; #SAJC201605: Geographical distribution and genetic variation of pathogens in Africa. This work is tightly linked to or is an important component of the above list projects, and is financially supported by all the fundings.Congenital human cytomegalovirus (HCMV) infection is the leading cause of neurological disabilities in children worldwide, but the mechanisms underlying these disorders are far from well-defined. HCMV infection has been shown to dysregulate the Notch signaling pathway in human neural progenitor cells (NPCs). As an important downstream effector of Notch signaling, the transcriptional regulator Hairy and Enhancer of Split 1 (Hes1) is essential for governing NPC fate and fetal brain development. In the present study, we report that HCMV infection downregulates Hes1 protein levels in infected NPCs. The HCMV 72-kDa immediate-early 1 protein (IE1) is involved in Hes1 degradation by assembling a ubiquitination complex and promoting Hes1 ubiquitination as a potential E3 ubiquitin ligase, followed by proteasomal degradation of Hes1. Sp100A, an important component of PML nuclear bodies, is identified to be another target of IE1-mediated ubiquitination. A C-terminal acidic region in IE1, spanning amino acids 451 to 475, is required for IE1/Hes1 physical interaction and IE1-mediated Hes1 ubiquitination, but is dispensable for IE1/Sp100A interaction and ubiquitination. Our study suggests a novel mechanism linking downregulation of Hes1 protein to neurodevelopmental disorders caused by HCMV infection. Our findings also complement the current knowledge of herpesviruses by identifying IE1 as the first potential HCMV-encoded E3 ubiquitin ligase.Publisher PDFPeer reviewe
    corecore