188,689 research outputs found

    MKP1 mediates resistance to therapy in HER2-positive breast tumors.

    Get PDF
    Mitogen-activated protein kinase phosphatase 1 (MKP1 or DUSP1) is an antiapoptotic phosphatase that is overexpressed in many cancers, including breast cancer. MKP1 expression is inducible in radiation-treated breast cancer cells, and correlates with human epidermal growth factor receptor 2 (ERBB2, HER2) expression. The role of MKP1 in therapy resistance suggests that targeting MKP1 in HER2-positive breast tumors may significantly enhance the efficacy of anti-HER2 and other anticancer therapies

    Carbon Nanotube Thermal Transport: Ballistic to Diffusive

    Full text link
    We propose to use l_0/(l_0+L) for the energy transmission covering both ballistic and diffusive regimes, where l_0 is mean free path and L is system length. This formula is applied to heat conduction in carbon nanotubes (CNTs). Calculations of thermal conduction show: (1) Thermal conductance at room temperature is proportional to the diameter of CNTs for single-walled CNTs (SWCNTs) and to the square of diameter for multi-walled CNTs (MWCNTs). (2) Interfaces play an important role in thermal conduction in CNTs due to the symmetry of CNTs vibrational modes. (3) When the phonon mean free path is comparable with the length L of CNTs in ballistic-diffusive regime, thermal conductivity \kappa goes as L^{\alpha} . The effective exponent \alpha is numerically found to decrease with increasing temperature and is insensitive to the diameter of SWCNTs for Umklapp scattering process. For short SWCNTs (<0.1 \mu m) we find \alpha \approx 0.8 at room temperature. These results are consistent with recent experimental findings.Comment: 4 pages, two figure

    Dimensional crossover of thermal conductance in nanowires

    Full text link
    Dimensional dependence of thermal conductance at low temperatures in nanowires is studied using the nonequilibrium Green's function (NEGF) method. Our calculation shows a smooth dimensional crossover of thermal conductance in nanowire from one-dimensional to three-dimensional behavior with the increase of diameters. The results are consistent with the experimental findings that the temperature dependence of thermal conductance at low temperature for diameters from tens to hundreds nanometers will be close to Debye law. The calculation also suggests that universal thermal conductance is only observable in nanowires with small diameters. We also find that the interfacial thermal conductance across Si and Ge nanowire is much lower than the corresponding value in bulk materials.Comment: 4 figure
    corecore