84 research outputs found

    Efficient Region-Aware Neural Radiance Fields for High-Fidelity Talking Portrait Synthesis

    Full text link
    This paper presents ER-NeRF, a novel conditional Neural Radiance Fields (NeRF) based architecture for talking portrait synthesis that can concurrently achieve fast convergence, real-time rendering, and state-of-the-art performance with small model size. Our idea is to explicitly exploit the unequal contribution of spatial regions to guide talking portrait modeling. Specifically, to improve the accuracy of dynamic head reconstruction, a compact and expressive NeRF-based Tri-Plane Hash Representation is introduced by pruning empty spatial regions with three planar hash encoders. For speech audio, we propose a Region Attention Module to generate region-aware condition feature via an attention mechanism. Different from existing methods that utilize an MLP-based encoder to learn the cross-modal relation implicitly, the attention mechanism builds an explicit connection between audio features and spatial regions to capture the priors of local motions. Moreover, a direct and fast Adaptive Pose Encoding is introduced to optimize the head-torso separation problem by mapping the complex transformation of the head pose into spatial coordinates. Extensive experiments demonstrate that our method renders better high-fidelity and audio-lips synchronized talking portrait videos, with realistic details and high efficiency compared to previous methods.Comment: Accepted by ICCV 202

    General-Purpose Multi-Modal OOD Detection Framework

    Full text link
    Out-of-distribution (OOD) detection identifies test samples that differ from the training data, which is critical to ensuring the safety and reliability of machine learning (ML) systems. While a plethora of methods have been developed to detect uni-modal OOD samples, only a few have focused on multi-modal OOD detection. Current contrastive learning-based methods primarily study multi-modal OOD detection in a scenario where both a given image and its corresponding textual description come from a new domain. However, real-world deployments of ML systems may face more anomaly scenarios caused by multiple factors like sensor faults, bad weather, and environmental changes. Hence, the goal of this work is to simultaneously detect from multiple different OOD scenarios in a fine-grained manner. To reach this goal, we propose a general-purpose weakly-supervised OOD detection framework, called WOOD, that combines a binary classifier and a contrastive learning component to reap the benefits of both. In order to better distinguish the latent representations of in-distribution (ID) and OOD samples, we adopt the Hinge loss to constrain their similarity. Furthermore, we develop a new scoring metric to integrate the prediction results from both the binary classifier and contrastive learning for identifying OOD samples. We evaluate the proposed WOOD model on multiple real-world datasets, and the experimental results demonstrate that the WOOD model outperforms the state-of-the-art methods for multi-modal OOD detection. Importantly, our approach is able to achieve high accuracy in OOD detection in three different OOD scenarios simultaneously. The source code will be made publicly available upon publication

    STPrivacy: Spatio-Temporal Privacy-Preserving Action Recognition

    Full text link
    Existing methods of privacy-preserving action recognition (PPAR) mainly focus on frame-level (spatial) privacy removal through 2D CNNs. Unfortunately, they have two major drawbacks. First, they may compromise temporal dynamics in input videos, which are critical for accurate action recognition. Second, they are vulnerable to practical attacking scenarios where attackers probe for privacy from an entire video rather than individual frames. To address these issues, we propose a novel framework STPrivacy to perform video-level PPAR. For the first time, we introduce vision Transformers into PPAR by treating a video as a tubelet sequence, and accordingly design two complementary mechanisms, i.e., sparsification and anonymization, to remove privacy from a spatio-temporal perspective. In specific, our privacy sparsification mechanism applies adaptive token selection to abandon action-irrelevant tubelets. Then, our anonymization mechanism implicitly manipulates the remaining action-tubelets to erase privacy in the embedding space through adversarial learning. These mechanisms provide significant advantages in terms of privacy preservation for human eyes and action-privacy trade-off adjustment during deployment. We additionally contribute the first two large-scale PPAR benchmarks, VP-HMDB51 and VP-UCF101, to the community. Extensive evaluations on them, as well as two other tasks, validate the effectiveness and generalization capability of our framework

    Didymin improves UV irradiation resistance in C. elegans

    Get PDF
    Didymin, a type of flavono-o-glycoside compound naturally present in citrus fruits, has been reported to be an effective anticancer agent. However, its effects on stress resistance are unclear. In this study, we treated Caenorhabditis elegans with didymin at several concentrations. We found that didymin reduced the effects of UV stressor on nematodes by decreasing reactive oxygen species levels and increasing superoxide dismutase (SOD) activity. Furthermore, we found that specific didymin-treated mutant nematodes daf-16(mu86) & daf-2(e1370), daf-16(mu86), akt-1(ok525), akt-2(ok393), and age-1(hx546) were susceptible to UV irradiation, whereas daf-2(e1371) was resistant to UV irradiation. In addition, we found that didymin not only promoted DAF-16 to transfer from cytoplasm to nucleus, but also increased both protein and mRNA expression levels of SOD-3 and HSP-16.2 after UV irradiation. Our results show that didymin affects UV irradiation resistance and it may act on daf-2 to regulate downstream genes through the insulin/IGF-1-like signaling pathway

    Performance characteristics of 18F–fluorodeoxyglucose in non-infected hip replacement

    Get PDF
    PurposeThe aim of this study was to retrospectively analyze 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/ computed tomography (CT) images of non-infected hip arthroplasty patients and summarize findings that may be useful for clinical practice.Methods18F-FDG PET/CT images of non-infected hip arthroplasty patients were collected from September 2009 to August 2021. The region of interest was independently delineated by two physicians and maximum standardized uptake values (SUVmax) were recorded and compared. Serologic data were also collected and the correlation between SUVmax and serologic parameters was analyzed, while the images were classified based on the 18F-FDG uptake pattern in the images using the diagnostic criteria proposed by Reinartz et al. (9). The interval between hip replacement and PET/CT was classified by year and the characteristics of the two groups were compared. The images of patients who underwent PET/CT multiple times were analyzed dynamically.ResultsA total of 121 examinations were included; six patients underwent PET/CT twice and two patients had three scans. There were no significant correlations between SUVmax and serologic results. The interobserver agreement between the two physicians in the classification according to the criteria of Reinartz et al. (9) was 0.957 (P < 0.005). Although there was non-specific uptake in cases with an arthroplasty-to-PET/CT interval this was non-significant. Additionally, 18F-FDG showed potential utility for dynamic observation of the condition of the hip.ConclusionSUVmax provided information independent of serologic results, meanwhile 18F-FDG showed potential applicability to the dynamic monitoring of hip arthroplasty-related diseases. However, the presence of blood vessels and muscles affected image interpretation and the specificity of 18F-FDG was not optimal. A more specific radionuclide is needed to maximize the benefits of using PET/CT for the assessment of periprosthetic joint infection (PJI)

    Diagnostic Value of the Fimbriae Distribution Pattern in Localization of Urinary Tract Infection

    Get PDF
    Urinary tract infections (UTIs) are one of the most common infectious diseases. UTIs are mainly caused by uropathogenic Escherichia coli (UPEC), and are either upper or lower according to the infection site. Fimbriae are necessary for UPEC to adhere to the host uroepithelium, and are abundant and diverse in UPEC strains. Although great progress has been made in determining the roles of different types of fimbriae in UPEC colonization, the contributions of multiple fimbriae to site-specific attachment also need to be considered. Therefore, the distribution patterns of 22 fimbrial genes in 90 UPEC strains from patients diagnosed with upper or lower UTIs were analyzed using PCR. The distribution patterns correlated with the infection sites, an XGBoost model with a mean accuracy of 83.33% and a mean area under the curve (AUC) of the receiver operating characteristic (ROC) of 0.92 demonstrated that fimbrial gene distribution patterns could predict the localization of upper and lower UTIs
    • …
    corecore