1,082 research outputs found

    N-butanol Extract from Melilotus Suaveolens Ledeb Affects Pro- and Anti-Inflammatory Cytokines and Mediators

    Get PDF
    Melilotus suaveolens Ledeb is a traditional medicinal plant for treating inflammation-related disease. This explores the inner anti-inflammatory mechanism of n-butanol extract from M. suaveolens Ledeb. Inflammatory cellular model was established by lipopolysaccharide intervention on RAW264.7 cell line. Levels of secreted cytokines TNF-α, IL-1β, IL-6, NO and IL-10 in supernatant, mRNA expression of TNF-α, COX-2, iNOS and HO-1, protein expression of COX-2 and HO-1, activation of NF-κB and ingredients in the extract were assayed by ELISA, real time quantitative PCR, western blot, immunocytochemical test and HPLC fingerprint test, respectively. As a result, the extract could not only markedly reduce the production of pro-inflammatory mediators to different extents by blocking NF-κB activation but also promote the release of anti-inflammatory mediator HO-1 significantly. Each 1 g extract contained 0.023531 mg coumarin and another two high polar ingredients, probably saponins. It can be concluded that the extract has similar effects on antagonizing pro-inflammatory mediators and cytokines like Dexamethasone, and has effects on promoting the production of anti-inflammatory mediators

    Diverse and Faithful Knowledge-Grounded Dialogue Generation via Sequential Posterior Inference

    Full text link
    The capability to generate responses with diversity and faithfulness using factual knowledge is paramount for creating a human-like, trustworthy dialogue system. Common strategies either adopt a two-step paradigm, which optimizes knowledge selection and response generation separately, and may overlook the inherent correlation between these two tasks, or leverage conditional variational method to jointly optimize knowledge selection and response generation by employing an inference network. In this paper, we present an end-to-end learning framework, termed Sequential Posterior Inference (SPI), capable of selecting knowledge and generating dialogues by approximately sampling from the posterior distribution. Unlike other methods, SPI does not require the inference network or assume a simple geometry of the posterior distribution. This straightforward and intuitive inference procedure of SPI directly queries the response generation model, allowing for accurate knowledge selection and generation of faithful responses. In addition to modeling contributions, our experimental results on two common dialogue datasets (Wizard of Wikipedia and Holl-E) demonstrate that SPI outperforms previous strong baselines according to both automatic and human evaluation metrics

    Activation of mammalian target of rapamycin mediates rat pain-related responses induced by BmK I, a sodium channel-specific modulator

    Get PDF
    The mammalian target of rapamycin (mTOR) is known to regulate cell proliferation and growth by controlling protein translation. Recently, it has been shown that mTOR signaling pathway is involved in long-term synaptic plasticity. However, the role of mTOR under different pain conditions is less clear. In this study, the spatiotemporal activation of mTOR that contributes to pain-related behaviors was investigated using a novel animal inflammatory pain model induced by BmK I, a sodium channel-specific modulator purified from scorpion venom. In this study, intraplantar injections of BmK I were found to induce the activation of mTOR, p70 ribosomal S6 protein kinase (p70 S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) in rat L5-L6 spinal neurons. In the spinal cord, mTOR, p70 S6K and 4E-BP1 were observed to be activated in the ipsilateral and contralateral regions, peaking at 1-2 h and recovery at 24 h post-intraplantar (i.pl.) BmK I administration. In addition, intrathecal (i.t.) injection of rapamycin - a specific inhibitor of mTOR - was observed to result in the reduction of spontaneous pain responses and the attenuation of unilateral thermal and bilateral mechanical hypersensitivity elicited by BmK I. Thus, these results indicate that the mTOR signaling pathway is mobilized in the induction and maintenance of pain-activated hypersensitivity

    Anti-inflammatory and anti-oxidative effects of corilagin in a rat model of acute cholestasis

    Get PDF
    BACKGROUND: Nowadays, treatments for cholestasis remain largely nonspecific and often ineffective. Recent studies showed that inflammatory injuries and oxidative stress occur in the liver with cholestasis. In this study, we would use corilagin to treat the animal model of acute cholestasis in order to define the activity to interfere with inflammation-related and oxidative stress pathway in cholestatic pathogenesis. METHODS: Rats were administrated with alpha-naphthylisothiocyanate to establish model of cholestasis and divided into corilagin, ursodeoxycholic acid, dexamethasone, model and normal groups with treatment of related agent. At 24h, 48h and 72h time points after administration, living condition, serum markers of liver damage, pathological changes of hepatic tissue, nuclear factor (NF)-kappaB, myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD) and nitric oxide (NO) were examined and observed. RESULTS: Compared to model group, corilagin had remarkable effect on living condition, pathological manifestation of liver tissue, total bilirubin, direct bilirubin, (P<0.01), but no effect on alanine aminotransferase (ALT) and aspartate aminotransferase (AST). With corilagin intervention, levels of MPO, MDA and translocation of NF-κB were notably decreased, and levels of SOD and NO were markedly increased (P<0.05 or P<0.01). CONCLUSIONS: It is shown that corilagin is a potential component to relieve cholestasis through inflammation-related and oxidation-related pathway

    A study on blocking store-operated Ca2+ entry in pulmonary arterial smooth muscle cells with xyloketals from marine fungi

    Get PDF
    In this study, the effect of four xyloketal compounds 1-4 on store-operated calcium entry (SOCE) was investigated in primary distal pulmonary arterial smooth muscle cells (PASMCs) isolated from mice. The results showed that xyloketal A (1), an unusual ketal compound with C-3 symmetry, exhibited strong SOCE blocking activity. Secretion of interleukin-8 (IL-8) was also inhibited by xyloketal A. The parallel artificial membrane permeability assay (PAMPA) of 1-4 suggested that these xyloketals were easily penetrable through the cell membrane. Moreover, the molecular docking study of xyloketal A with activation region of the stromal interaction molecule (STIM) 1 and the calcium release-activated calcium modulator (ORAI) 1 (STIM1-ORAI1) protein complex, the key domain of SOCE, revealed that xyloketal A exibited non-covalent interaction with the key residue lysine 363 (LYS363) in the identified cytosolic regions in STIM1-C. These findings provided useful information for xyloketal A as SOCE inhibitor for further evaluation

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+ee^+e^- collider. In this method, the doubly tagged ψ(3770)D0D0\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure
    corecore