5,411 research outputs found

    Eco-Innovation Indices as Tools for Measuring Eco-Innovation

    Get PDF
    Measuring eco-innovation helps us understand the overall trends and raises awareness in society. Measuring eco-innovation at the national level and making comparisons across countries may allow us to benchmark performance and foster policy learning. This paper assesses two indices developed in two different regions: The ASEM Eco-Innovation Index (ASEI) by the ASEM SMEs Eco-Innovation Center, based in Republic of Korea; and the Eco-Innovation Scoreboard (Eco-IS) developed by the Eco-Innovation Observatory, based in the European Union. This paper aims to examine and compare the features of both and attempts to obtain insights on their strengths and weaknesses. Towards this aim, our paper assesses those scoreboards against four criteria stemming from innovation analysis: (1) relevance of areas and stakeholders covered; (2) ability to indicate changes; (3) directions towards common goals; and (4) ability to facilitate further changes. We conclude both are promising, despite data shortages, and have great potential to contribute towards the sustainable development goals (SDGs), particularly with regard to the SDGs on sustainable industrialization and sustainable consumption and production. In comparison, the ASEI covers more countries than the Eco-IS. However, the ASEI has limitations on measuring indicators due to limited data availability in Asian countries. The Eco-IS is closely linked with the regional and national policies for eco-innovation in Europe, while the ASEI’s impact appears more limited, as of now. In conclusion, the research results give insights into key areas, goals and applications of eco-innovation indices, and can help upgrading eco-innovation indices. This research helps interpret the scores of two indices better and facilitate application of the scores in the multiple ways. It is expected that this research contributes to developing and modifying a global eco-innovation index and enhancing the ability of these indices to facilitate eco-innovation strategies at national levels and across relevant actors

    Guidelines Aimed at Reducing the Risks of User Acceptance Delay in the Context of an IT Service Project Management Plan

    Get PDF
    Delays in the user acceptance of information technology (IT) service projects in Korea have occurred frequently due to various risk factors. User acceptance delays may hinder the achievement of the client’s project objectives and cause schedule delays or cost overruns. Furthermore, the client may impose a delay charge and claim for additional damages, causing serious disputes between buyer and supplier. The main causes of user acceptance delays are unclear user requirements, changes in user requirements, poor-quality development outputs, excessive functional and non-functional errors, lack of user involvement, unclear user roles and responsibilities, and unclear criteria of user acceptance test.We help foster the timely completion of user acceptance by proposing a method of identifying the risk factors in user acceptance delay and creating a project management plan to weed out the identified risks. We propose a guideline for an IT service management plan that weeds out or lowers the risk factors well in advance. To validate the guideline’s utility, we apply it to IT service projects. The results show that the guideline is effective in identifying and removing risk factors affecting delays in the user acceptance of IT service projects

    COMPARATIVE ANALYSIS OF YANG HAK-SEON VAULT AND TSUKAHARA 1260? VAULT IN GYMNASTICS

    Get PDF
    The study was a single-subject study on the top-elite vaulter in the world. This study was purposed to compare kinematic differences between Yang Hak-Seon vault (Yang-1) and Tsukahara 1260? vault (Yang-2) performed by Yang Hak-Seon. Fourteen high-speed cameras were used to capture a whole body segment motion of Yang-2 vault during the practice session. Yang-1 vault showed faster CM vertical velocity until the vault table takeoff and faster CM horizontal velocity prior to the vault table touchdown. However, the trunk rotation angle and its angular velocity of Yang-2 vault exceeded Yang-1 vault significantly. This might be due to a half turn off the springboard onto the vault table of Yang-2 vault, which resulted in larger initial angular momentum at the vault table touchdown and further increase in angular velocity during the vault table contact

    DOSE FASTER HOPPING FREQUENCY IMPROVE RESPONSE TIME AND KICKING SPEED IN TAEKWONDO ROUNDHOUSE KICK?

    Get PDF
    The purpose of this study was to investigate the effect of rhythmic hopping frequency on the response time and kicking speeds in Taekwondo roundhouse kick. Eleven elementary and middle-school athletes voluntarily participated in this study. They performed five roundhouse kicks at three different hopping frequencies (normal, 15% faster than normal, and 15% slower than normal) and no hop condition. Results indicated that the 15% slower hopping frequency induced a significantly longer response time than the 15% faster frequency. The 15% faster frequency resulted in faster maximum kicking speed than normal frequency did, while there was no difference in contact kicking speed. Partially the faster hopping frequency would be beneficial to kicking performance

    Accelerating Large-Scale Graph-based Nearest Neighbor Search on a Computational Storage Platform

    Full text link
    K-nearest neighbor search is one of the fundamental tasks in various applications and the hierarchical navigable small world (HNSW) has recently drawn attention in large-scale cloud services, as it easily scales up the database while offering fast search. On the other hand, a computational storage device (CSD) that combines programmable logic and storage modules on a single board becomes popular to address the data bandwidth bottleneck of modern computing systems. In this paper, we propose a computational storage platform that can accelerate a large-scale graph-based nearest neighbor search algorithm based on SmartSSD CSD. To this end, we modify the algorithm more amenable on the hardware and implement two types of accelerators using HLS- and RTL-based methodology with various optimization methods. In addition, we scale up the proposed platform to have 4 SmartSSDs and apply graph parallelism to boost the system performance further. As a result, the proposed computational storage platform achieves 75.59 query per second throughput for the SIFT1B dataset at 258.66W power dissipation, which is 12.83x and 17.91x faster and 10.43x and 24.33x more energy efficient than the conventional CPU-based and GPU-based server platform, respectively. With multi-terabyte storage and custom acceleration capability, we believe that the proposed computational storage platform is a promising solution for cost-sensitive cloud datacenters.Comment: Extension of FCCM 20201 and Accepted in Transaction on Computer
    • …
    corecore