35 research outputs found

    Pharmacodynamics of cisplatin in human head and neck cancer: correlation between platinum content, DNA adduct levels and drug sensitivity in vitro and in vivo

    Get PDF
    Total platinum contents and cisplatin-DNA adduct levels were determined in vivo in xenografted tumour tissues in mice and in vitro in cultured tumour cells of head and neck squamous cell carcinoma (HNSCC), and correlated with sensitivity to cisplatin. In vivo, a panel of five HNSCC tumour lines growing as xenografts in nude mice was used. In vitro, the panel consisted of five HNSCC cell lines, of which four had an in vivo equivalent. Sensitivity to cisplatin varied three- to sevenfold among cell lines and tumours respectively. However, the ranking of the sensitivities of the tumour lines (in vivo), also after reinjection of the cultured tumour cells, did not coincide with that of the corresponding cell lines, which showed that cell culture systems are not representative for the in vivo situation. Both in vitro and in vivo, however, significant correlations were found between total platinum levels, measured by atomic absorption spectrophotometry (AAS), and tumour response to cisplatin therapy at all time points tested. The levels of the two major cisplatin-DNA adduct types were determined by a recently developed and improved 32P post-labelling assay at various time points after cisplatin treatment. Evidence is presented that the platinum-AG adduct, in which platinum is bound to guanine and an adjacent adenine, may be the cytotoxic lesion because a significant correlation was found between the platinum-AG levels and the sensitivities in our panel of HNSCC, in vitro as well as in vivo. This correlation with the platinum-AG levels was established at 1 h (in vitro) and 3 h (in vivo) after the start of the cisplatin treatment, which emphasizes the importance of early sampling

    Online flow cytometry reveals microbial dynamics influenced by concurrent natural and operational events in groundwater used for drinking water treatment

    No full text
    Detailed measurements of physical, chemical and biological dynamics in groundwater are key to understanding the important processes in place and their influence on water quality - particularly when used for drinking water. Measuring temporal bacterial dynamics at high frequency is challenging due to the limitations in automation of sampling and detection of the conventional, cultivation-based microbial methods. In this study, fully automated online flow cytometry was applied in a groundwater system for the first time in order to monitor microbial dynamics in a groundwater extraction well. Measurements of bacterial concentrations every 15 minutes during 14 days revealed both aperiodic and periodic dynamics that could not be detected previously, resulting in total cell concentration (TCC) fluctuations between 120 and 280 cells mu L-1. The aperiodic dynamic was linked to river water contamination following precipitation events, while the (diurnal) periodic dynamic was attributed to changes in hydrological conditions as a consequence of intermittent groundwater extraction. Based on the high number of measurements, the two patterns could be disentangled and quantified separately. This study i) increases the understanding of system performance, ii) helps to optimize monitoring strategies, and iii) opens the possibility for more sophisticated (quantitative) microbial risk assessment of drinking water treatment systems
    corecore