12 research outputs found

    Young stars at large distances from the galactic plane: mechanisms of formation

    Get PDF
    We have collected from the literature a list of early-type stars, situated at large distances from the galactic plane, for which evidence of youth seems convincing. We discuss two possible formation mechanisms for these stars: ejection from the plane by dynamical interactions within small clusters, and formation away from the plane, via induced shocks created by spiral density waves. We identify the stars that could be explained by each mechanism. We conclude that the ejection mechanism can account for about two thirds of the stars, while a combination of star formation at z = 500-800 pc from the plane and ejection, can account for 90 percent of these stars. Neither mechanism, nor both together, can explain the most extreme examples.Comment: 6 pages, No figures. Sixth Pacific Rim Conference on Stellar Astrophysics - A tribute to Helmut Abt, (Kluwer

    A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome

    Get PDF
    Down syndrome, caused by an extra copy of chromosome 21, is associated with a greatly increased risk of early onset Alzheimer disease. It is thought that this risk is conferred by the presence of three copies of the gene encoding amyloid precursor protein (APP), an Alzheimer risk factor, although the possession of extra copies of other chromosome 21 genes may also play a role. Further study of the mechanisms underlying the development of Alzheimer disease in Down syndrome could provide insights into the mechanisms that cause dementia in the general population

    Population recovery following decline in an endangered stream-breeding frog (mixophyes fleayi) from subtropical Australia

    Get PDF
    Amphibians have undergone dramatic declines and extinctions worldwide. Prominent among these have been the streambreeding frogs in the rainforests of eastern Australia. The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has been postulated as the primary cause of these declines. We conducted a capture-mark-recapture study over a 7-year period on the endangered Fleay’s barred frog (Mixophyes fleayi) at two independent streams (30 km apart) in order to assess the stability of these populations. This species had undergone a severe decline across its narrow geographic range. Markrecapture modelling showed that the number of individuals increased 3–10 fold along stream transects over this period. Frog detection probabilities were frequently above 50% but declined as the populations increased. Adult survival was important to overall population persistence in light of low recruitment events, suggesting that longevity may be a key factor in this recovery. One male and female were present in the capture record for .6 years. This study provides an unambiguous example of population recovery in the presence of Bd

    Quantitative evidence for global amphibian population declines

    Full text link
    Although there is growing concern that amphibian populations are declining globally1±3, much of the supporting evidence is either anecdotal4,5 or derived from short-term studies at small geographical scales6±8. This raises questions not only about the dificulty of detecting temporal trends in populations which are notoriously variable9,10, but also about the validity of inferring global trends from local or regional studies11,12. Here we use data from 936 populations to assess large-scale temporal and spatial variations in amphibian population trends. On a global scale, our results indicate relatively rapid declines from the late 1950s/early 1960s to the late 1960s, followed by a reduced rate of decline to the present. Amphibian population trends during the 1960s were negative in western Europe (including the United Kingdom) and North America, but only the latter populations showed declines from the 1970s to the late 1990s. These results suggest that while large-scale trends show considerable geographical and temporal variability, amphibian populations are in fact declining-and that this decline has been happening for several decades

    Density, climate and varying return points: an analysis of long-term population fluctuations in the threatened European tree frog.

    Get PDF
    Experimental research has identified many putative agents of amphibian decline, yet the population-level consequences of these agents remain unknown, owing to lack of information on compensatory density dependence in natural populations. Here, we investigate the relative importance of intrinsic (density-dependent) and extrinsic (climatic) factors impacting the dynamics of a tree frog (Hyla arborea) population over 22 years. A combination of log-linear density dependence and rainfall (with a 2-year time lag corresponding to development time) explain 75% of the variance in the rate of increase. Such fluctuations around a variable return point might be responsible for the seemingly erratic demography and disequilibrium dynamics of many amphibian populations

    An Experimental Test of Buffer Utility as a Technique for Managing Pool-Breeding Amphibians

    No full text
    corecore