11 research outputs found

    Marine Structures as Templates for Biomaterials

    No full text
    During the last two decades, “learning from nature” has given us new directions for the use of natural organic and inorganic skeletons, drug delivery devices, new medical treatment methods initiating unique designs and devices ranging from nano- to macroscale. These materials and designs have been instrumental to introduce the simplest remedies to vital problems in regenerative medicine, providing frameworks and highly accessible sources of osteopromotive analogues, scaffolds and drug delivery device proteins. This is exemplified by the biological effectiveness of marine structures such as corals and shells and sponge skeletons, extracts of spongin and nacre, sea urchin, sea snails and Foraminifera. Organic matrix and inorganic marine skeletons possess a habitat suitable for proliferating added mesenchymal stem cell populations and promoting clinically acceptable bone formation. A wide range of applications of these marine structures and their conversion methods are covered by excellent review papers and chapters. In this chapter based on our research, published work and book chapters, we aim to cover the nature, morphology and the use of some of these structures for tissue engineering, bone grafts, drug delivery and specific extracts such as proteins for regenerative medicine

    Current Status and Future Challenges in Cephalopod Culture

    No full text
    11 pagesThis chapter presents an overall perspective on the current status of cephalopod culture, its bottlenecks and future challenges. It focuses on the species that have received more research effort and consequently accumulated more scientific literature during the present century, namely Sepia officinalis, Sepioteuthis lessoniana, Octopus maya and Octopus vulgaris. Knowledge regarding physiology, metabolism and nutrition of different species is still lacking. Two main challenges are identified: the development of a sustainable artificial diet and the control of reproduction. Understanding cephalopod physiology and nutrition will probably be the biggest challenge in developing the large-scale culture of this group of molluscs on a medium to long term. In addition, zootechnical parameters need future research and improvement. The performance of an ethical experimentation with cephalopods is strongly encouraged and any zootechnical development should be performed and adapted accordingly. The potential of cephalopod culture extends far beyond its use for research and human consumption and probably it will be translated in a remarkable production in the coming yearsThis chapter presents an overall perspective on the current status of cephalopod culture, its bottlenecks and future challenges. It focuses on the species that have received more research effort and consequently accumulated more scientific literature during the present century, namely Sepia officinalis, Sepioteuthis lessoniana, Octopus maya and Octopus vulgaris. Knowledge regarding physiology, metabolism and nutrition of different species is still lacking. Two main challenges are identified: the development of a sustainable artificial diet and the control of reproduction. Understanding cephalopod physiology and nutrition will probably be the biggest challenge in developing the large-scale culture of this group of molluscs on a medium to long term. In addition, zootechnical parameters need future research and improvement. The performance of an ethical experimentation with cephalopods is strongly encouraged and any zootechnical development should be performed and adapted accordingly. The potential of cephalopod culture extends far beyond its use for research and human consumption and probably it will be translated in a remarkable production in the coming yearsPeer reviewe

    Extracting hydroxyapatite and its precursors from natural resources

    No full text
    Healing of segmental bone defects remain a difficult problem in orthopedic and trauma surgery. One reason for this difficulty is the limited availability of bone material to fill the defect and promote bone growth. Hydroxyapatite (HA) is a synthetic biomaterial, which is chemically similar to the mineral component of bones and hard tissues in mammals and, therefore, it can be used as a filler to replace damaged bone or as a coating on implants to promote bone in-growth into prosthetic implants when used in orthopedic, dental, and maxillofacial applications. HA is a stoichiometric material with a chemical composition of Ca10(PO4)6(OH)2, while a mineral component of bone is a non-stoichiometric HA with trace amounts of ions such as Na+, Zn2+, Mg2+, K+, Si2+, Ba2+, F-, CO3 2-, etc. This review looks at the progress being made to extract HA and its precursors containing trace amount of beneficial ions from biological resources like animal bones, eggshells, wood, algae, etc. Properties, such as particle size, morphology, stoichiometry, thermal stability, and the presence of trace ions are studied with respect to the starting material and recovery method used. This review also highlights the importance of extracting HA from natural resources and gives future directions to the researcher so that HA extracted from biological resources can be used clinically as a valuable biomaterial
    corecore