231 research outputs found
The effects of mechanical loading on tendons--an in vivo and in vitro model study.
Mechanical loading constantly acts on tendons, and a better understanding of its effects on the tendons is essential to gain more insights into tendon patho-physiology. This study aims to investigate tendon mechanobiological responses through the use of mouse treadmill running as an in vivo model and mechanical stretching of tendon cells as an in vitro model. In the in vivo study, mice underwent moderate treadmill running (MTR) and intensive treadmill running (ITR) regimens. Treadmill running elevated the expression of mechanical growth factors (MGF) and enhanced the proliferative potential of tendon stem cells (TSCs) in both patellar and Achilles tendons. In both tendons, MTR upregulated tenocyte-related genes: collagen type I (Coll. I ∼10 fold) and tenomodulin (∼3-4 fold), but did not affect non-tenocyte-related genes: LPL (adipocyte), Sox9 (chondrocyte), Runx2 and Osterix (both osteocyte). However, ITR upregulated both tenocyte (Coll. I ∼7-11 fold; tenomodulin ∼4-5 fold) and non-tenocyte-related genes (∼3-8 fold). In the in vitro study, TSCs and tenocytes were stretched to 4% and 8% using a custom made mechanical loading system. Low mechanical stretching (4%) of TSCs from both patellar and Achilles tendons increased the expression of only the tenocyte-related genes (Coll. I ∼5-6 fold; tenomodulin ∼6-13 fold), but high mechanical stretching (8%) increased the expression of both tenocyte (Coll. I ∼28-50 fold; tenomodulin ∼14-48 fold) and non-tenocyte-related genes (2-5-fold). However, in tenocytes, non-tenocyte related gene expression was not altered by the application of either low or high mechanical stretching. These findings indicate that appropriate mechanical loading could be beneficial to tendons because of their potential to induce anabolic changes in tendon cells. However, while excessive mechanical loading caused anabolic changes in tendons, it also induced differentiation of TSCs into non-tenocytes, which may lead to the development of degenerative tendinopathy frequently seen in clinical settings
Human Tendon Stem Cells Better Maintain Their Stemness in Hypoxic Culture Conditions
Tissues and organs in vivo are under a hypoxic condition; that is, the oxygen tension is typically much lower than in ambient air. However, the effects of such a hypoxic condition on tendon stem cells, a recently identified tendon cell, remain incompletely defined. In cell culture experiments, we subjected human tendon stem cells (hTSCs) to a hypoxic condition with 5% O2, while subjecting control cells to a normaxic condition with 20% O2. We found that hTSCs at 5% O2 had significantly greater cell proliferation than those at 20% O2. Moreover, the expression of two stem cell marker genes, Nanog and Oct-4, was upregulated in the cells cultured in 5% O2. Finally, in cultures under 5% O2, more hTSCs expressed the stem cell markers nucleostemin, Oct-4, Nanog and SSEA-4. In an in vivo experiment, we found that when both cell groups were implanted with tendon-derived matrix, more tendon-like structures formed in the 5% O2 treated hTSCs than in 20% O2 treated hTSCs. Additionally, when both cell groups were implanted with Matrigel, the 5% O2 treated hTSCs showed more extensive formation of fatty, cartilage-like and bone-like tissues than the 20% O2 treated cells. Together, the findings of this study show that oxygen tension is a niche factor that regulates the stemness of hTSCs, and that less oxygen is better for maintaining hTSCs in culture and expanding them for cell therapy of tendon injuries. © 2013 Wang, Zhang
Moderate exercise mitigates the detrimental effects of aging on tendon stem cells
Aging is known to cause tendon degeneration whereas moderate exercise imparts beneficial effects on tendons. Since stem cells play a vital role in maintaining tissue integrity, in this study we aimed to define the effects of aging and moderate exercise on tendon stem/progenitor cells (TSCs) using in vitro and in vivo models. TSCs derived from aging mice (9 and 24 months) proliferated significantly slower than TSCs obtained from young mice (2.5 and 5 months). In addition, expression of the stem cell markers Oct-4, nucleostemin (NS), Sca-1 and SSEA-1 in TSCs decreased in an age-dependent manner. Interestingly, moderate mechanical stretching (4%) of aging TSCs in vitro significantly increased the expression of the stem cell marker, NS, but 8% stretching decreased NS expression. Similarly, 4% mechanical stretching increased the expression of Nanog, another stem cell marker, and the tenocyte-related genes, collagen I and tenomodulin. However, 8% stretching increased expression of the non-tenocyte-related genes, LPL, Sox-9 and Runx-2, while 4% stretching had minimal effects on the expression of these genes. In the in vivo study, moderate treadmill running (MTR) of aging mice (9 months) resulted in the increased proliferation rate of aging TSCs in culture, decreased lipid deposition, proteoglycan accumulation and calcification, and increased the expression of NS in the patellar tendons. These findings indicate that while aging impairs the proliferative ability of TSCs and reduces their stemness, moderate exercise can mitigate the deleterious effects of aging on TSCs and therefore may be responsible for decreased aging-induced tendon degeneration
The differential effects of leukocyte-containing and pure platelet-rich plasma (PRP) on tendon stem/progenitor cells - implications of PRP application for the clinical treatment of tendon injuries
Introduction: Platelet-rich plasma (PRP) is widely used to treat tendon injuries in clinics. These PRP preparations often contain white blood cells or leukocytes, and the precise cellular effects of leukocyte-rich PRP (L-PRP) on tendons are not well defined. Therefore, in this study, we determined the effects of L-PRP on tendon stem/progenitor cells (TSCs), which play a key role in tendon homeostasis and repair. Methods: TSCs isolated from the patellar tendons of rabbits were treated with L-PRP or P-PRP (pure PRP without leukocytes) in vitro, followed by measuring cell proliferation, stem cell marker expression, inflammatory gene expression, and anabolic and catabolic protein expression by using immunostaining, quantitative real-time polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay, respectively. Results: Cell proliferation was induced by both L-PRP and P-PRP in a dose-dependent manner with maximum proliferation at a 10 % PRP dose. Both PRP treatments also induced differentiation of TSCs into active tenocytes. Nevertheless, the two types of PRP largely differed in several effects exerted on TSCs. L-PRP induced predominantly catabolic and inflammatory changes in differentiated tenocytes; its treatment increased the expression of catabolic marker genes, matrix metalloproteinase-1 (MMP-1), MMP-13, interleukin-1beta (IL-1β), IL-6 and tumor necrosis factor-alpha (TNF-α), and their respective protein expression and prostaglandin E2 (PGE 2) production. In contrast, P-PRP mainly induced anabolic changes; that is, P-PRP increased the gene expression of anabolic genes, alpha-smooth muscle actin (α-SMA), collagen types I and III. Conclusions: These findings indicate that, while both L-PRP and P-PRP appear to be "safe" in inducing TSC differentiation into active tenocytes, L-PRP may be detrimental to the healing of injured tendons because it induces catabolic and inflammatory effects on tendon cells and may prolong the effects in healing tendons. On the other hand, when P-PRP is used to treat acutely injured tendons, it may result in the formation of excessive scar tissue due to the strong potential of P-PRP to induce inordinate cellular anabolic effects
Facilitators' influence on student PBL small group session online information resource use: a survey
BACKGROUND: In problem-based learning curricular research has focused on the characteristics of good facilitators and how they influence student performance and satisfaction. Far less frequently addressed has been the question of how PBL facilitators influence the small group session activity of students. We investigated the impact that facilitators' encouragement of use or non-use of the Internet would have on the students' use of online information resources. METHODS: Survey of student and facilitator perceptions of facilitator behavior and student use of online information resources. RESULTS: Students who used online information resources rated their facilitators' behavior as more encouraging, while students in groups who didn't use online information resources during problem-based learning small group sessions rated their facilitators' behavior as less encouraging. This result was statistically significant. CONCLUSIONS: Our study supports the role of the facilitator as an influence on medical students in small groups, particularly with respect to facilitator verbal behavior encouraging or discouraging student use of information technology in the problem-based learning small group session
Creating an animal model of tendinopathy by inducing chondrogenic differentiation with kartogenin
Previous animal studies have shown that long term rat treadmill running induces over-use tendinopathy, which manifests as proteoglycan accumulation and chondrocytes-like cells within the affected tendons. Creating this animal model of tendinopathy by long term treadmill running is however time-consuming, costly and may vary among animals. In this study, we used a new approach to develop an animal model of tendinopathy using kartogenin (KGN), a bio-compound that can stimulate endogenous stem/progenitor cells to differentiate into chondrocytes. KGN-beads were fabricated and implanted into rat Achilles tendons. Five weeks after implantation, chondrocytes and proteoglycan accumulation were found at the KGN implanted site. Vascularity as well as disorganization in collagen fibers were also present in the same site along with increased expression of the chondrocyte specific marker, collagen type II (Col. II). In vitro studies confirmed that KGN was released continuously from KGN-alginate in vivo beads and induced chondrogenic differentiation of tendon stem/progenitor cells (TSCs) suggesting that chondrogenesis after KGN-bead implantation into the rat tendons is likely due to the aberrant differentiation of TSCs into chondrocytes. Taken together, our results showed that KGN-alginate beads can be used to create a rat model of tendinopathy, which, at least in part, reproduces the features of over-use tendinopathy model created by long term treadmill running. This model is mechanistic (stem cell differentiation), highly reproducible and precise in creating localized tendinopathic lesions. It is expected that this model will be useful to evaluate the effects of various topical treatments such as NSAIDs and platelet-rich plasma (PRP) for the treatment of tendinopathy. Copyright
Characterization of rare spontaneous human immunodeficiency virus viral controllers attending a national United Kingdom clinical service using a combination of serology and molecular diagnostic assays
BACKGROUND: We report outcomes and novel characterization of a unique cohort of 42 individuals with persistently indeterminate human immunodeficiency virus (HIV) status, the majority of whom are HIV viral controllers. METHODS: Eligible individuals had indeterminate or positive HIV serology, but persistently undetectable HIV ribonucleic acid (RNA) by commercial assays and were not taking antiretroviral therapy (ART). Routine investigations included HIV Western blot, HIV viral load, qualitative HIV-1 deoxyribonucleic acid (DNA), coinfection screen, and T-cell quantification. Research assays included T-cell activation, ART measurement, single-copy assays detecting HIV-1 RNA and DNA, and plasma cytokine quantification. Human immunodeficiency virus seropositivity was defined as ≥3 bands on Western blot; molecular positivity was defined as detection of HIV RNA or DNA. RESULTS: Human immunodeficiency virus infection was excluded in 10 of 42 referrals, remained unconfirmed in 2 of 42, and was confirmed in 30 of 42, who were identified as HIV elite controllers (ECs), normal CD4 T-cell counts (median 820/mL, range 805-1336), and normal CD4/CD8 ratio (median 1.8, range 1.2-1.9). Elite controllers had a median duration of elite control of 6 years (interquartile range = 4-14). Antiretroviral therapy was undetected in all 23 subjects tested. Two distinct categories of ECs were identified: molecular positive (n = 20) and molecular negative (n = 10). CONCLUSIONS: Human immunodeficiency virus status was resolved for 95% of referrals with the majority diagnosed as EC. The clinical significance of the 2 molecular categories among ECs requires further investigation
The Response of Vocal Fold Fibroblasts and Mesenchymal Stromal Cells to Vibration
Illumination of cellular changes caused by mechanical forces present within the laryngeal microenvironment may well guide strategies for tissue engineering the vocal fold lamina propria. The purpose of this study was to compare the response of human vocal fold fibroblasts (hVFF) and bone marrow mesenchymal stem cells (BM-MSC) to vibratory stimulus. In order to study these effects, a bioreactor capable of vibrating two cell seeded substrates was developed. The cell seeded substrates contact each other as a result of the sinusoidal frequency, producing a motion similar to the movement of true vocal folds. Utilizing this bioreactor, hVFF and BM-MSC were subjected to 200 Hz vibration and 20% strain for 8 hours. Immunohistochemistry (Ki-67 and TUNEL) was performed to examine cell proliferation and apoptosis respectively, while semi-quantitative RT-PCR was used to assess extracellular matrix related gene expression. HVFF significantly proliferated (p = 0.011) when subjected to 200 Hz vibration and 20% strain, while BM-MSC did not (p = 1.0). A statistically significant increase in apoptosis of BM-MSC (p = 0.0402) was observed under the experimental conditions; however high cell viability (96%) was maintained. HVFF did not have significantly altered apoptosis (p = 0.7849) when subjected to vibration and strain. Semi-quantitative RT-PCR results show no significant differences in expression levels of collagen I (BM-MSC p = 0.1951, hVFF p = v0.3629), fibronectin (BM-MSC p = 0.1951, hVFF p = 0.2513), and TGF-β1 (BM-MSC p = 0.2534, hVFF p = 0.6029) between vibratory and static conditions in either cell type. Finally, smooth muscle actin mRNA was not present in either vibrated or static samples, indicating that no myofibroblast differentiation occurred for either cell type. Together, these results demonstrate that BM-MSC may be a suitable alternative to hVFF for vocal fold tissue engineering. Further investigation into a larger number of gene markers, protein levels, increased number of donors and vibratory conditions are warranted
Microstructural and Compositional Features of the Fibrous and Hyaline Cartilage on the Medial Tibial Plateau Imply a Unique Role for the Hopping Locomotion of Kangaroo
Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone.This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
- …