22 research outputs found

    Heterologous expression of cytotoxic sesquiterpenoids from the medicinal mushroom Lignosus rhinocerotis in yeast

    Get PDF
    Background: Genome mining facilitated by heterologous systems is an emerging approach to access the chemical diversity encoded in basidiomycete genomes. In this study, three sesquiterpene synthase genes, GME3634, GME3638, and GME9210, which were highly expressed in the sclerotium of the medicinal mushroom Lignosus rhinocerotis, were cloned and heterologously expressed in a yeast system. Results: Metabolite profile analysis of the yeast culture extracts by GC-MS showed the production of several sesquiterpene alcohols (C 15 H 26 O), including cadinols and germacrene D-4-ol as major products. Other detected sesquiterpenes include selina-6-en-4-ol, ß-elemene, ß-cubebene, and cedrene. Two purified major compounds namely (+)-torreyol and a-cadinol synthesised by GME3638 and GME3634 respectively, are stereoisomers and their chemical structures were confirmed by 1 H and 13 C NMR. Phylogenetic analysis revealed that GME3638 and GME3634 are a pair of orthologues, and are grouped together with terpene synthases that synthesise cadinenes and related sesquiterpenes. (+)-Torreyol and a-cadinol were tested against a panel of human cancer cell lines and the latter was found to exhibit selective potent cytotoxicity in breast adenocarcinoma cells (MCF7) with IC 50 value of 3.5 ± 0.58 ”g/ml while a-cadinol is less active (IC 50 = 18.0 ± 3.27 ”g/ml). Conclusions: This demonstrates that yeast-based genome mining, guided by transcriptomics, is a promising approach for uncovering bioactive compounds from medicinal mushrooms

    A Nonerythropoietic Peptide that Mimics the 3D Structure of Erythropoietin Reduces Organ Injury/Dysfunction and Inflammation in Experimental Hemorrhagic Shock

    Get PDF
    Recent studies have shown that erythropoietin, critical for the differentiation and survival of erythrocytes, has cytoprotective effects in a wide variety of tissues, including the kidney and lung. However, erythropoietin has been shown to have a serious side effect—an increase in thrombovascular effects. We investigated whether pyroglutamate helix B-surface peptide (pHBSP), a nonerythropoietic tissue-protective peptide mimicking the 3D structure of erythropoietin, protects against the organ injury/ dysfunction and inflammation in rats subjected to severe hemorrhagic shock (HS). Mean arterial blood pressure was reduced to 35 ± 5 mmHg for 90 min followed by resuscitation with 20 mL/kg Ringer Lactate for 10 min and 50% of the shed blood for 50 min. Rats were euthanized 4 h after the onset of resuscitation. pHBSP was administered 30 min or 60 min into resuscitation. HS resulted in significant organ injury/dysfunction (renal, hepatic, pancreas, neuromuscular, lung) and inflammation (lung). In rats subjected to HS, pHBSP significantly attenuated (i) organ injury/dysfunction (renal, hepatic, pancreas, neuromuscular, lung) and inflammation (lung), (ii) increased the phosphorylation of Akt, glycogen synthase kinase-3ÎČ and endothelial nitric oxide synthase, (iii) attenuated the activation of nuclear factor (NF)-ÎșB and (iv) attenuated the increase in p38 and extracellular signal-regulated kinase (ERK)1/2 phosphorylation. pHBSP protects against multiple organ injury/dysfunction and inflammation caused by severe hemorrhagic shock by a mechanism that may involve activation of Akt and endothelial nitric oxide synthase, and inhibition of glycogen synthase kinase-3ÎČ and NF-ÎșB

    An Effector Peptide Family Required for Drosophila Toll-Mediated Immunity

    No full text
    In Drosophila melanogaster, recognition of an invading pathogen activates the Toll or Imd signaling pathway, triggering robust upregulation of innate immune effectors. Although the mechanisms of pathogen recognition and signaling are now well understood, the functions of the immune-induced transcriptome and proteome remain much less well characterized. Through bioinformatic analysis of effector gene sequences, we have defined a family of twelve genes - the Bomanins (Boms) - that are specifically induced by Toll and that encode small, secreted peptides of unknown biochemical activity. Using targeted genome engineering, we have deleted ten of the twelve Bom genes. Remarkably, inactivating these ten genes decreases survival upon microbial infection to the same extent, and with the same specificity, as does eliminating Toll pathway function. Toll signaling, however, appears unaffected. Assaying bacterial load post-infection in wild-type and mutant flies, we provide evidence that the Boms are required for resistance to, rather than tolerance of, infection. In addition, by generating and assaying a deletion of a smaller subset of the Bom genes, we find that there is overlap in Bom activity toward particular pathogens. Together, these studies deepen our understanding of Toll-mediated immunity and provide a new in vivo model for exploration of the innate immune effector repertoire

    Metabolism of Chemical Carcinogens

    No full text
    corecore