21 research outputs found

    Restricting retrotransposons: a review

    Get PDF

    Effects of Soil Temperature and Nitrogen Status on Kinetics of 15NO3 Uptake by Roots of Field-grown Agropyron Desertorum

    No full text
    Plant NO8‐ acquisition is largely determined by root uptake capacity. Although root uptake capacity has been shown to be sensitive to both root temperature and previous nitrogen (N) supply in hydroponic systems, the uptake capacity response to similar environmental factors under field conditions has not been investigated. Using 15NO3−, root uptake capacities were determined in excised roots of Agropyron desertorum (Fisch. ex Link) Schult grown in the field at two soil temperatures and two N fertilization treatments. Variation in soil and root temperatures was achieved by application of clear plastic film or insulating mulch to the soil immediately around the target plants. Uptake rates were measured at six different assay solution concentrations (from 1 to 1000 μM external 15NO3− concentration range). Two months after the imposition of soil N and temperature treatments, a biphasic transport system (a high‐affinity) saturable phase and a low‐affinity transport phase) was apparent in low N‐treated plants. Nitrate uptake capacity in the low‐concentration range (1–500μM) was significantly reduced in N‐fertilized plants compared with unfertilized control plants and the effect was more pronounced at high (27 °C) than low (17 °C) soil and assay temperatures. Furthermore, high soil N status inhibited the expression of a low‐affinity NO3− transport system which was clearly apparent at external NO3− concentration ranges between 500 and 1000 mM in plants grown at low soil N. Prior soil N and temperature history may ultimately determine root ability to exploit NO3− flushes which can result from changes in soil environmental conditions

    Plasma membrane anion channels in higher plants and their putative functions in roots.

    No full text
    Recent years have seen considerable progress in identifying anion channel activities in higher plant cells. This review outlines the functional properties of plasma membrane anion channels in plant cells and discusses their likely roles in root function. Plant anion channels can be grouped according to their voltage dependence and kinetics: (1) depolarization-activated anion channels which mediate either anion efflux (R and S types) or anion influx (outwardly rectifying type); (2) hyperpolarization-activated anion channels which mediate anion efflux, and (3) anion channels activated by light or membrane stretch. These types of anion channel are apparent in root cells where they may function in anion homeostasis, membrane stabilization, osmoregulation, boron tolerance and regulation of passive salt loading into the xylem vessels. In addition, roots possess anion channels exhibiting unique properties which are consistent with them having specialized functions in root physiology. Most notable are the organic anion selective channels, which are regulated by extracellular Al3+ or the phosphate status of the plant. Finally, although the molecular identities of plant anion channels remain elusive, the diverse electrophysiological properties of plant anion channels suggest that large and diverse multigene families probably encode these channels
    corecore