43 research outputs found

    Functional Relationship between Skull Form and Feeding Mechanics in Sphenodon, and Implications for Diapsid Skull Development

    Get PDF
    The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether skulls are mechanically “over-designed” and constrained by phylogeny and development. Mechanical analysis of diapsid reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and extinct diapsids comprise an open framework of fenestrae (window-like openings) separated by bony struts (e.g., lizards, tuatara, dinosaurs and crocodiles), a cranial form thought to be strongly linked to feeding forces. We investigated this link by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone) with respect to functional forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in maintenance

    Relationship between tissue stiffness and degree of mineralization of developing trabecular bone

    No full text
    It is unknown how the degree of mineralization of bone in individual trabecular elements is related to the corresponding mechanical properties at the bone tissue level. Understanding this relationship is important for the comprehension of the mechanical behavior of bone at both the apparent and tissue level. The purpose of the present study was, therefore, to determine the tissue stiffness and degree of mineralization of the trabecular bone tissue and to establish a relationship between these two variables. A second goal was to assess the change in this relation during development. Mandibular condylar specimens of four fetal and four newborn pigs were used. The tissue stiffness was measured using nanoindentation. A pair of indents was made in the cores of 15 trabecular elements per specimen. Subsequently, the degree of mineralization of these locations was determined from microcomputed tomography. The mean tissue stiffness was 11.2 GPa (±0.5 GPa) in the fetal group and 12.0 GPa (±0.8 GPa) in the newborn group, which was not significantly different. The degree of mineralization of the fetal trabecular cores was 744 mg/cm3 (±28 mg/cm3). The one in the newborn bone measured 719 mg/cm3 (±34 mg/cm3). Again, the difference was statistically insignificant. A significant relationship between tissue stiffness and degree of mineralization was obtained for fetal (R = 0.42, p <0.001) and newborn (R = 0.72, p <0.001) groups. It was concluded that woven bone tissue in fetal and newborn trabecular cores resembles adult trabecular bone in terms of tissue properties and is strongly correlated with degree of mineralization. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 200

    Intratrabecular distribution of tissue stiffness and mineralization in developing trabecular bone

    No full text
    The purpose of this study was to investigate the relation between bone tissue stiffness and degree of mineralization distribution and to examine possible changes during prenatal development. Understanding this may provide insight into adaptation processes and into deformation mechanisms of the bone microstructure. Mandibular condyles from four fetal and newborn pigs were used. Tissue stiffness was measured using nanoindentation, the degree of mineralization with microCT. Eight indents were made over the trabecular width of 15 trabeculae in each specimen, leading to a total of 960 indents. Subsequently, the degree of mineralization of these locations was determined. Intratrabecular variations in bone tissue stiffness and degree of mineralization showed a similar pattern; low at trabecular surfaces and higher in the cores. A strong correlation was found between the two variables, which remained unchanged during development. It was concluded that bone tissue in fetal and newborn trabecular cores resembles adult trabecular bone tissue properties and is distributed in a regular radial pattern in trabeculae. For the first time, it was shown that the intratrabecular tissue stiffness develops along the same path as the degree of mineralization. Knowledge regarding intratrabecular tissue stiffness and mineralization results in a better understanding of trabecular bone mechanical behavior on a structural and tissue level

    Mechanical stiffness of TMJ condylar cartilage increases after artificial aging by ribose

    No full text
    OBJECTIVE: Aging is accompanied by a series of changes in mature tissues that influence their properties and functions. Collagen, as one of the main extracellular components of cartilage, becomes highly crosslinked during aging. In this study, the aim was to examine whether a correlation exists between collagen crosslinking induced by artificial aging and mechanical properties of the temporomandibular joint (TMJ) condyle. To evaluate this hypothesis, collagen crosslinks were induced using ribose incubation. METHODS: Porcine TMJ condyles were incubated for 7 days with different concentrations of ribose. The compressive modulus and stiffness ratio (incubated versus control) was determined after loading. Glycosaminoglycan and collagen content, and the number of crosslinks were analyzed. Tissue structure was visualized by microscopy using different staining methods. RESULTS: Concomitant with an increasing concentration of ribose, an increase of collagen crosslinks was found. The number of crosslinks increased almost 50 fold after incubation with the highest concentration of ribose. Simultaneously, the stiffness ratio of the samples showed a significant increase after incubation with the ribose. Pearson correlation analyses showed a significant positive correlation between the overall stiffness ratio and the crosslink level; the higher the number of crosslinks the higher the stiffness. CONCLUSION: The present model, in which ribose was used to mimic certain aspects of age-related changes, can be employed as an in vitro model to study age-related mechanical changes in the TMJ condyle.status: publishe

    Prediction of volumetric strain in the human temporomandibular joint cartilage during jaw movement

    No full text
    Human temporomandibular joint loading causes pressurization and flow of interstitial fluid in its cartilaginous structures. This largely determines its load-bearing and maintenance capacity. It was hypothesized that during cyclical jaw movements normal pressure distribution dynamics would enable fluid to reach all necessary cartilage regions. This was tested qualitatively by analysis of local volumetric strain dynamics during jaw open–close movements predicted by a dynamic model of the human masticatory system. Finite-element analysis was performed in separate regions of the articular cartilage layers and articular disc. Heterogeneous patterns of dilatation and compression were predicted. Compression was found to be more dominant during jaw closing than opening. The pressure gradient in the superior layer of the articular disc was more mediolaterally orientated than in its inferior layer. The findings suggest that, where necessary, regionally the cartilage can imbibe fluid to protect the subchondral bone from impact loads effectively. In the disc itself presumably all areas receive regular refreshment of interstitial fluid
    corecore