18 research outputs found

    Transmission in Heteronymous Spinal Pathways Is Modified after Stroke and Related to Motor Incoordination

    Get PDF
    Changes in reflex spinal pathways after stroke have been shown to affect motor activity in agonist and antagonist muscles acting at the same joint. However, only a few studies have evaluated the heteronymous reflex pathways modulating motoneuronal activity at different joints. This study investigates whether there are changes in the spinal facilitatory and inhibitory pathways linking knee to ankle extensors and if such changes may be related to motor deficits after stroke. The early facilitation and later inhibition of soleus H reflex evoked by the stimulation of femoral nerve at 2 times the motor threshold of the quadriceps were assessed in 15 healthy participants and on the paretic and the non-paretic sides of 15 stroke participants. The relationships between this reflex modulation and the levels of motor recovery, coordination and spasticity were then studied. Results show a significant (Mann-Whitney U; P<0.05) increase in both the peak amplitude (mean±SEM: 80±22% enhancement of the control H reflex) and duration (4.2±0.5 ms) of the facilitation on the paretic side of the stroke individuals compared to their non-paretic side (36±6% and 2.9±0.4 ms) and to the values of the control subjects (33±4% and 2.8±0.4 ms, respectively). Moreover, the later strong inhibition observed in all control subjects was decreased in the stroke subjects. Both the peak amplitude and the duration of the increased facilitation were inversely correlated (Spearman r = −0.65; P = 0.009 and r = −0.67; P = 0.007, respectively) with the level of coordination (LEMOCOT) of the paretic leg. Duration of this facilitation was also correlated (r = −0.58, P = 0.024) with the level of motor recovery (CMSA). These results confirm changes in transmission in heteronymous spinal pathways that are related to motor deficits after stroke

    Multiscale Molecular Simulations of Polymer-Matrix Nanocomposites

    Get PDF

    Coherence analysis differentiates between cortical myoclonic tremor and essential tremor.

    No full text
    Familial cortical myoclonic tremor with epilepsy (FCMTE) is characterized by a distal kinetic tremor, infrequent epileptic attacks, and autosomal dominant inheritance. The tremor is thought to originate from the motor cortex. In our patient group, a premovement cortical spike could not be established on electroencephalogram (EEG) back-averaging. Corticomuscular and intermuscular coherence analysis can demonstrate a cortical common drive to muscles. We carried out coherence analysis of electromyography (EMG) of forearm muscles and EEG of contralateral motor cortex in 7 FCMTE patients, 8 essential tremor (ET) patients, and 7 healthy controls. Results showed strong cortico- and intermuscular coherence in the 8- to 30-Hz range in the FCMTE patients, with EEG preceding EMG. Healthy controls and ET patients showed normal weak coherence around 20 Hz. The ET patients showed some additional coherence at tremor frequency (6 Hz), probably the result of sensory information flowing back to the sensorimotor cortex. These findings point to a pathological cortical drive in FCMTE patients leading to tremulous movements. Coherence analysis is an easy and useful method to differentiate FCMTE from ET. Coherence analysis is helpful when investigating a cortical common drive in cortical tremor and other movement disorders

    Propriospinal myoclonus: clinical reappraisal and review of literature.

    No full text
    OBJECTIVE: Propriospinal myoclonus (PSM) is a rare disorder with repetitive, usually flexor arrhythmic brief jerks of the trunk, hips, and knees in a fixed pattern. It has a presumed generation in the spinal cord and diagnosis depends on characteristic features at polymyography. Recently, a historical paradigm shift took place as PSM has been reported to be a functional (or psychogenic) movement disorder (FMD) in most patients. This review aims to characterize the clinical features, etiology, electrophysiologic features, and treatment outcomes of PSM. METHODS: Re-evaluation of all published PSM cases and systematic scoring of clinical and electrophysiologic characteristics in all published cases since 1991. RESULTS: Of the 179 identified patients with PSM (55% male), the mean age at onset was 43 years (range 6-88 years). FMD was diagnosed in 104 (58%) cases. In 12 cases (26% of reported secondary cases, 7% of total cases), a structural spinal cord lesion was found. Clonazepam and botulinum toxin may be effective in reducing jerks. CONCLUSIONS: FMD is more frequent than previously assumed. Structural lesions reported to underlie PSM are scarce. Based on our clinical experience and the reviewed literature, we recommend polymyography to assess recruitment variability combined with a Bereitschaftspotential recording in all cases

    Decreased cortical inhibition and yet cerebellar pathology in 'familial cortical myoclonic tremor with epilepsy'.

    No full text
    Cortical hyperexcitability is a feature of "familial cortical myoclonic tremor with epilepsy" (FCMTE). However, neuropathological investigations in a single FCMTE patient showed isolated cerebellar pathology. Pathological investigations in a second FCMTE patient, reported here, confirmed cerebellar Purkinje cell degeneration and a normal sensorimotor cortex. Subsequently, we sought to explore the nature of cerebellar and motor system pathophysiology in FCMTE. Eye movement recordings and transcranial magnetic stimulation performed in six related FCMTE patients showed impaired saccades and smooth pursuit and downbeat nystagmus upon hyperventilation, as in patients with spinocerebellar ataxia type 6. In FCMTE patients short-interval intracortical inhibition (SICI) was significantly reduced. Resting motor threshold, recruitment curve, silent period, and intracortical facilitation were normal. The neuropathological and ocular motor abnormalities indicate cerebellar involvement in FCMTE patients. Decreased SICI is compatible with intracortical GABA(A)-ergic dysfunction. Cerebellar and intracortical functional changes could result from a common mechanism such as a channelopathy. Alternatively, decreased cortical inhibition may be caused by dysfunction of the cerebello-thalamo-cortical loop as a result of primary cerebellar pathology
    corecore