2 research outputs found

    Multiomics Analysis Provides Novel Pathways Related to Progression of Heart Failure

    No full text
    Background: Despite major advances in pharmacological treatment for patients with heart failure, residual mortality remains high. This suggests that important pathways are not yet targeted by current heart failure therapies. Objectives: We sought integration of genetic, transcriptomic, and proteomic data in a large cohort of patients with heart failure to detect major pathways related to progression of heart failure leading to death. Methods: We used machine learning methodology based on stacked generalization framework and gradient boosting algorithms, using 54 clinical phenotypes, 403 circulating plasma proteins, 36,046 transcript expression levels in whole blood, and 6 million genomic markers to model all-cause mortality in 2,516 patients with heart failure from the BIOSTAT-CHF (Systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure) study. Results were validated in an independent cohort of 1,738 patients. Results: The mean age of the patients was 70 years (Q1-Q3: 61-78 years), 27% were female, median N-terminal pro–B-type natriuretic peptide was 4,275 ng/L (Q1-Q3: 2,360-8,486 ng/L), and 7% had heart failure with preserved ejection fraction. During a median follow-up of 21 months, 657 (26%) of patients died. The 4 major pathways with a significant association to all-cause mortality were: 1) the PI3K/Akt pathway; 2) the MAPK pathway; 3) the Ras signaling pathway; and 4) epidermal growth factor receptor tyrosine kinase inhibitor resistance. Results were validated in an independent cohort of 1,738 patients. Conclusions: A systems biology approach integrating genomic, transcriptomic, and proteomic data identified 4 major pathways related to mortality. These pathways are related to decreased activation of the cardioprotective ERBB2 receptor, which can be modified by neuregulin

    Effects of haemodynamically atrio-ventricular optimized His bundle pacing on heart failure symptoms and exercise capacity: the His Optimized Pacing Evaluated for Heart Failure (HOPE-HF) randomized, double-blind, cross-over trial

    No full text
    Aims: Excessive prolongation of PR interval impairs coupling of atrio-ventricular (AV) contraction, which reduces left ventricular pre-load and stroke volume, and worsens symptoms. His bundle pacing allows AV delay shortening while maintaining normal ventricular activation. HOPE-HF evaluated whether AV optimized His pacing is preferable to no-pacing, in a double-blind cross-over fashion, in patients with heart failure, left ventricular ejection fraction (LVEF) ≤40%, PR interval ≥200 ms and either QRS ≤140 ms or right bundle branch block. Methods and results: Patients had atrial and His bundle leads implanted (and an implantable cardioverter-defibrillator lead if clinically indicated) and were randomized to 6 months of pacing and 6 months of no-pacing utilizing a cross-over design. The primary outcome was peak oxygen uptake during symptom-limited exercise. Quality of life, LVEF and patients' holistic symptomatic preference between arms were secondary outcomes. Overall, 167 patients were randomized: 90% men, 69 ± 10 years, QRS duration 124 ± 26 ms, PR interval 249 ± 59 ms, LVEF 33 ± 9%. Neither peak oxygen uptake (+0.25 ml/kg/min, 95% confidence interval [CI] −0.23 to +0.73, p = 0.3) nor LVEF (+0.5%, 95% CI −0.7 to 1.6, p = 0.4) changed with pacing but Minnesota Living with Heart Failure quality of life improved significantly (−3.7, 95% CI −7.1 to −0.3, p = 0.03). Seventy-six percent of patients preferred His bundle pacing-on and 24% pacing-off (p < 0.0001). Conclusion: His bundle pacing did not increase peak oxygen uptake but, under double-blind conditions, significantly improved quality of life and was symptomatically preferred by the clear majority of patients. Ventricular pacing delivered via the His bundle did not adversely impact ventricular function during the 6 months
    corecore