14 research outputs found

    Left-handedness and risk of breast cancer

    Get PDF
    Left-handedness may be an indicator of intrauterine exposure to oestrogens, which may increase the risk of breast cancer. Women (n=1786) from a 1981 health survey in Busselton were followed up using death and cancer registries. Left-handers had higher risk of breast cancer than right-handers and the effect was greater for post-menopausal breast cancer (hazard ratio=2.59, 95% confidence interval 1.11–6.03)

    Local Adaptation of Aboveground Herbivores towards Plant Phenotypes Induced by Soil Biota

    Get PDF
    Background: Soil biota may trigger strong physiological responses in plants and consequently induce distinct phenotypes. Plant phenotype, in turn, has a strong impact on herbivore performance. Here, we tested the hypothesis that aboveground herbivores are able to adapt to plant phenotypes induced by soil biota. Methodology and Principal Findings: We bred spider mites for 15 generations on snap beans with three different belowground biotic interactions: (i) no biota (to serve as control), (ii) arbuscular mycorrhizal fungi and (ii) root-feeding nematodes. Subsequently, we conducted a reciprocal selection experiment using these spider mites, which had been kept on the differently treated plants. Belowground treatments induced changes in plant biomass, nutrient composition and water content. No direct chemical defence through cyanogenesis was detected in any of the plant groups. Growth rates of spider mites were higher on the ecotypes on which they were bred for 15 generations, although the statistical significance disappeared for mites from the nematode treatment when corrected for all multiple comparisons. Conclusion/Significance: These results demonstrate that belowground biota may indeed impose selection on the aboveground insect herbivores mediated by the host plant. The observed adaptation was driven by variable quantitativ

    Hypermetamorphosis in a leaf-miner allows insects to cope with a confined nutritional space

    No full text
    International audienceHypermetamorphosis has been described in several Lepidoptera leaf-miner species (mostly Gracillariidae, Epipyropidae, and Phyllocnistidae) and can be defined as a strong modification of the larval morphology associated with a switch in its feeding mode. Evolution of this larval feeding strategy presumably influences nutritional resources that can be exploited and has strong consequences for plant morphology. The following studyfocuses on Phyllonorycter blancardella (Lepidoptera: Gracillariidae), a leaf-miner developing on Malus domestica. We characterize the morphology of larval mouthparts and the resulting morphological impact on leaf tissues. Our results show that first instars do not strongly affect the leaf anatomy and leave most plant cells intact, while later instars significantly disrupt leaf tissues. Additionally, young larvae are ‘‘fluid-feeders’’ and feed on plant cell fluids resulting from the progression of the larvae through the lower layer of the leaf spongy parenchyma. They occupy a feeding niche clearly distinct from later instars that are ‘‘tissue-feeders’’. Hypermetamorphosis in P. blancardella most likely allows insects to cope with a confined nutritional space by partitioning the limited feeding resources, and may help leaf-miners to optimize their nutritio
    corecore